8 12: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- provide an anchor so we can return to the top of the page -->
k = 12 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,5,-8,2,-3,4,-2,6,-7,8,-5,7,-6/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=8|k=12|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,5,-8,2,-3,4,-2,6,-7,8,-5,7,-6/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 27: Line 15:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 8 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 8, width is 5.
braid_index = 5 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>&chi;</td></tr>
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 72: Line 39:
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{12}-2 q^{11}+6 q^9-8 q^8-3 q^7+18 q^6-15 q^5-10 q^4+30 q^3-18 q^2-16 q+35-16 q^{-1} -18 q^{-2} +30 q^{-3} -10 q^{-4} -15 q^{-5} +18 q^{-6} -3 q^{-7} -8 q^{-8} +6 q^{-9} -2 q^{-11} + q^{-12} </math> |

coloured_jones_3 = <math>q^{24}-2 q^{23}+2 q^{21}+3 q^{20}-7 q^{19}-5 q^{18}+11 q^{17}+13 q^{16}-18 q^{15}-22 q^{14}+20 q^{13}+40 q^{12}-26 q^{11}-54 q^{10}+23 q^9+73 q^8-20 q^7-88 q^6+15 q^5+100 q^4-9 q^3-108 q^2+4 q+109+4 q^{-1} -108 q^{-2} -9 q^{-3} +100 q^{-4} +15 q^{-5} -88 q^{-6} -20 q^{-7} +73 q^{-8} +23 q^{-9} -54 q^{-10} -26 q^{-11} +40 q^{-12} +20 q^{-13} -22 q^{-14} -18 q^{-15} +13 q^{-16} +11 q^{-17} -5 q^{-18} -7 q^{-19} +3 q^{-20} +2 q^{-21} -2 q^{-23} + q^{-24} </math> |
{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}+6 q^9-8 q^8-3 q^7+18 q^6-15 q^5-10 q^4+30 q^3-18 q^2-16 q+35-16 q^{-1} -18 q^{-2} +30 q^{-3} -10 q^{-4} -15 q^{-5} +18 q^{-6} -3 q^{-7} -8 q^{-8} +6 q^{-9} -2 q^{-11} + q^{-12} </math>|J3=<math>q^{24}-2 q^{23}+2 q^{21}+3 q^{20}-7 q^{19}-5 q^{18}+11 q^{17}+13 q^{16}-18 q^{15}-22 q^{14}+20 q^{13}+40 q^{12}-26 q^{11}-54 q^{10}+23 q^9+73 q^8-20 q^7-88 q^6+15 q^5+100 q^4-9 q^3-108 q^2+4 q+109+4 q^{-1} -108 q^{-2} -9 q^{-3} +100 q^{-4} +15 q^{-5} -88 q^{-6} -20 q^{-7} +73 q^{-8} +23 q^{-9} -54 q^{-10} -26 q^{-11} +40 q^{-12} +20 q^{-13} -22 q^{-14} -18 q^{-15} +13 q^{-16} +11 q^{-17} -5 q^{-18} -7 q^{-19} +3 q^{-20} +2 q^{-21} -2 q^{-23} + q^{-24} </math>|J4=<math>q^{40}-2 q^{39}+2 q^{37}-q^{36}+4 q^{35}-9 q^{34}-q^{33}+10 q^{32}+q^{31}+13 q^{30}-32 q^{29}-14 q^{28}+25 q^{27}+19 q^{26}+46 q^{25}-72 q^{24}-58 q^{23}+23 q^{22}+54 q^{21}+130 q^{20}-105 q^{19}-134 q^{18}-21 q^{17}+81 q^{16}+255 q^{15}-101 q^{14}-209 q^{13}-104 q^{12}+77 q^{11}+381 q^{10}-64 q^9-257 q^8-187 q^7+52 q^6+464 q^5-20 q^4-267 q^3-244 q^2+18 q+493+18 q^{-1} -244 q^{-2} -267 q^{-3} -20 q^{-4} +464 q^{-5} +52 q^{-6} -187 q^{-7} -257 q^{-8} -64 q^{-9} +381 q^{-10} +77 q^{-11} -104 q^{-12} -209 q^{-13} -101 q^{-14} +255 q^{-15} +81 q^{-16} -21 q^{-17} -134 q^{-18} -105 q^{-19} +130 q^{-20} +54 q^{-21} +23 q^{-22} -58 q^{-23} -72 q^{-24} +46 q^{-25} +19 q^{-26} +25 q^{-27} -14 q^{-28} -32 q^{-29} +13 q^{-30} + q^{-31} +10 q^{-32} - q^{-33} -9 q^{-34} +4 q^{-35} - q^{-36} +2 q^{-37} -2 q^{-39} + q^{-40} </math>|J5=<math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+2 q^{54}-5 q^{53}-2 q^{52}+9 q^{51}+3 q^{50}-2 q^{49}-3 q^{48}-18 q^{47}-8 q^{46}+22 q^{45}+32 q^{44}+14 q^{43}-20 q^{42}-63 q^{41}-52 q^{40}+30 q^{39}+99 q^{38}+101 q^{37}-q^{36}-149 q^{35}-185 q^{34}-39 q^{33}+177 q^{32}+285 q^{31}+144 q^{30}-202 q^{29}-411 q^{28}-251 q^{27}+169 q^{26}+520 q^{25}+428 q^{24}-118 q^{23}-632 q^{22}-588 q^{21}+23 q^{20}+695 q^{19}+777 q^{18}+91 q^{17}-748 q^{16}-931 q^{15}-217 q^{14}+766 q^{13}+1064 q^{12}+339 q^{11}-761 q^{10}-1171 q^9-444 q^8+743 q^7+1238 q^6+535 q^5-705 q^4-1286 q^3-605 q^2+666 q+1291+666 q^{-1} -605 q^{-2} -1286 q^{-3} -705 q^{-4} +535 q^{-5} +1238 q^{-6} +743 q^{-7} -444 q^{-8} -1171 q^{-9} -761 q^{-10} +339 q^{-11} +1064 q^{-12} +766 q^{-13} -217 q^{-14} -931 q^{-15} -748 q^{-16} +91 q^{-17} +777 q^{-18} +695 q^{-19} +23 q^{-20} -588 q^{-21} -632 q^{-22} -118 q^{-23} +428 q^{-24} +520 q^{-25} +169 q^{-26} -251 q^{-27} -411 q^{-28} -202 q^{-29} +144 q^{-30} +285 q^{-31} +177 q^{-32} -39 q^{-33} -185 q^{-34} -149 q^{-35} - q^{-36} +101 q^{-37} +99 q^{-38} +30 q^{-39} -52 q^{-40} -63 q^{-41} -20 q^{-42} +14 q^{-43} +32 q^{-44} +22 q^{-45} -8 q^{-46} -18 q^{-47} -3 q^{-48} -2 q^{-49} +3 q^{-50} +9 q^{-51} -2 q^{-52} -5 q^{-53} +2 q^{-54} - q^{-56} +2 q^{-57} -2 q^{-59} + q^{-60} </math>|J6=<math>q^{84}-2 q^{83}+2 q^{81}-q^{80}-2 q^{78}+6 q^{77}-6 q^{76}-3 q^{75}+11 q^{74}-q^{73}-2 q^{72}-12 q^{71}+11 q^{70}-16 q^{69}-7 q^{68}+38 q^{67}+16 q^{66}+3 q^{65}-41 q^{64}+q^{63}-68 q^{62}-33 q^{61}+98 q^{60}+93 q^{59}+77 q^{58}-58 q^{57}-37 q^{56}-237 q^{55}-183 q^{54}+124 q^{53}+255 q^{52}+331 q^{51}+93 q^{50}+5 q^{49}-556 q^{48}-604 q^{47}-102 q^{46}+356 q^{45}+782 q^{44}+595 q^{43}+402 q^{42}-827 q^{41}-1294 q^{40}-786 q^{39}+85 q^{38}+1183 q^{37}+1419 q^{36}+1336 q^{35}-712 q^{34}-1957 q^{33}-1851 q^{32}-715 q^{31}+1194 q^{30}+2244 q^{29}+2655 q^{28}-93 q^{27}-2262 q^{26}-2933 q^{25}-1845 q^{24}+746 q^{23}+2752 q^{22}+3943 q^{21}+806 q^{20}-2153 q^{19}-3708 q^{18}-2911 q^{17}+70 q^{16}+2891 q^{15}+4876 q^{14}+1634 q^{13}-1812 q^{12}-4100 q^{11}-3656 q^{10}-556 q^9+2791 q^8+5381 q^7+2212 q^6-1428 q^5-4191 q^4-4055 q^3-1036 q^2+2568 q+5533+2568 q^{-1} -1036 q^{-2} -4055 q^{-3} -4191 q^{-4} -1428 q^{-5} +2212 q^{-6} +5381 q^{-7} +2791 q^{-8} -556 q^{-9} -3656 q^{-10} -4100 q^{-11} -1812 q^{-12} +1634 q^{-13} +4876 q^{-14} +2891 q^{-15} +70 q^{-16} -2911 q^{-17} -3708 q^{-18} -2153 q^{-19} +806 q^{-20} +3943 q^{-21} +2752 q^{-22} +746 q^{-23} -1845 q^{-24} -2933 q^{-25} -2262 q^{-26} -93 q^{-27} +2655 q^{-28} +2244 q^{-29} +1194 q^{-30} -715 q^{-31} -1851 q^{-32} -1957 q^{-33} -712 q^{-34} +1336 q^{-35} +1419 q^{-36} +1183 q^{-37} +85 q^{-38} -786 q^{-39} -1294 q^{-40} -827 q^{-41} +402 q^{-42} +595 q^{-43} +782 q^{-44} +356 q^{-45} -102 q^{-46} -604 q^{-47} -556 q^{-48} +5 q^{-49} +93 q^{-50} +331 q^{-51} +255 q^{-52} +124 q^{-53} -183 q^{-54} -237 q^{-55} -37 q^{-56} -58 q^{-57} +77 q^{-58} +93 q^{-59} +98 q^{-60} -33 q^{-61} -68 q^{-62} + q^{-63} -41 q^{-64} +3 q^{-65} +16 q^{-66} +38 q^{-67} -7 q^{-68} -16 q^{-69} +11 q^{-70} -12 q^{-71} -2 q^{-72} - q^{-73} +11 q^{-74} -3 q^{-75} -6 q^{-76} +6 q^{-77} -2 q^{-78} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} </math>|J7=<math>q^{112}-2 q^{111}+2 q^{109}-q^{108}-2 q^{106}+2 q^{105}+5 q^{104}-7 q^{103}-q^{102}+7 q^{101}-q^{100}-12 q^{98}-2 q^{97}+17 q^{96}-13 q^{95}+3 q^{94}+22 q^{93}+7 q^{92}+7 q^{91}-43 q^{90}-35 q^{89}+10 q^{88}-26 q^{87}+25 q^{86}+81 q^{85}+63 q^{84}+69 q^{83}-77 q^{82}-148 q^{81}-104 q^{80}-156 q^{79}+17 q^{78}+206 q^{77}+282 q^{76}+356 q^{75}+55 q^{74}-268 q^{73}-435 q^{72}-661 q^{71}-340 q^{70}+204 q^{69}+654 q^{68}+1130 q^{67}+788 q^{66}+49 q^{65}-750 q^{64}-1693 q^{63}-1545 q^{62}-598 q^{61}+680 q^{60}+2252 q^{59}+2499 q^{58}+1547 q^{57}-198 q^{56}-2717 q^{55}-3672 q^{54}-2860 q^{53}-655 q^{52}+2844 q^{51}+4768 q^{50}+4537 q^{49}+2104 q^{48}-2562 q^{47}-5828 q^{46}-6373 q^{45}-3891 q^{44}+1784 q^{43}+6441 q^{42}+8212 q^{41}+6132 q^{40}-511 q^{39}-6764 q^{38}-9928 q^{37}-8380 q^{36}-1108 q^{35}+6552 q^{34}+11294 q^{33}+10685 q^{32}+2988 q^{31}-6052 q^{30}-12328 q^{29}-12727 q^{28}-4870 q^{27}+5238 q^{26}+12969 q^{25}+14476 q^{24}+6663 q^{23}-4286 q^{22}-13308 q^{21}-15867 q^{20}-8241 q^{19}+3344 q^{18}+13388 q^{17}+16876 q^{16}+9543 q^{15}-2421 q^{14}-13285 q^{13}-17618 q^{12}-10578 q^{11}+1640 q^{10}+13082 q^9+18052 q^8+11361 q^7-915 q^6-12789 q^5-18322 q^4-11965 q^3+311 q^2+12426 q+18379+12426 q^{-1} +311 q^{-2} -11965 q^{-3} -18322 q^{-4} -12789 q^{-5} -915 q^{-6} +11361 q^{-7} +18052 q^{-8} +13082 q^{-9} +1640 q^{-10} -10578 q^{-11} -17618 q^{-12} -13285 q^{-13} -2421 q^{-14} +9543 q^{-15} +16876 q^{-16} +13388 q^{-17} +3344 q^{-18} -8241 q^{-19} -15867 q^{-20} -13308 q^{-21} -4286 q^{-22} +6663 q^{-23} +14476 q^{-24} +12969 q^{-25} +5238 q^{-26} -4870 q^{-27} -12727 q^{-28} -12328 q^{-29} -6052 q^{-30} +2988 q^{-31} +10685 q^{-32} +11294 q^{-33} +6552 q^{-34} -1108 q^{-35} -8380 q^{-36} -9928 q^{-37} -6764 q^{-38} -511 q^{-39} +6132 q^{-40} +8212 q^{-41} +6441 q^{-42} +1784 q^{-43} -3891 q^{-44} -6373 q^{-45} -5828 q^{-46} -2562 q^{-47} +2104 q^{-48} +4537 q^{-49} +4768 q^{-50} +2844 q^{-51} -655 q^{-52} -2860 q^{-53} -3672 q^{-54} -2717 q^{-55} -198 q^{-56} +1547 q^{-57} +2499 q^{-58} +2252 q^{-59} +680 q^{-60} -598 q^{-61} -1545 q^{-62} -1693 q^{-63} -750 q^{-64} +49 q^{-65} +788 q^{-66} +1130 q^{-67} +654 q^{-68} +204 q^{-69} -340 q^{-70} -661 q^{-71} -435 q^{-72} -268 q^{-73} +55 q^{-74} +356 q^{-75} +282 q^{-76} +206 q^{-77} +17 q^{-78} -156 q^{-79} -104 q^{-80} -148 q^{-81} -77 q^{-82} +69 q^{-83} +63 q^{-84} +81 q^{-85} +25 q^{-86} -26 q^{-87} +10 q^{-88} -35 q^{-89} -43 q^{-90} +7 q^{-91} +7 q^{-92} +22 q^{-93} +3 q^{-94} -13 q^{-95} +17 q^{-96} -2 q^{-97} -12 q^{-98} - q^{-100} +7 q^{-101} - q^{-102} -7 q^{-103} +5 q^{-104} +2 q^{-105} -2 q^{-106} - q^{-108} +2 q^{-109} -2 q^{-111} + q^{-112} </math>}}
coloured_jones_4 = <math>q^{40}-2 q^{39}+2 q^{37}-q^{36}+4 q^{35}-9 q^{34}-q^{33}+10 q^{32}+q^{31}+13 q^{30}-32 q^{29}-14 q^{28}+25 q^{27}+19 q^{26}+46 q^{25}-72 q^{24}-58 q^{23}+23 q^{22}+54 q^{21}+130 q^{20}-105 q^{19}-134 q^{18}-21 q^{17}+81 q^{16}+255 q^{15}-101 q^{14}-209 q^{13}-104 q^{12}+77 q^{11}+381 q^{10}-64 q^9-257 q^8-187 q^7+52 q^6+464 q^5-20 q^4-267 q^3-244 q^2+18 q+493+18 q^{-1} -244 q^{-2} -267 q^{-3} -20 q^{-4} +464 q^{-5} +52 q^{-6} -187 q^{-7} -257 q^{-8} -64 q^{-9} +381 q^{-10} +77 q^{-11} -104 q^{-12} -209 q^{-13} -101 q^{-14} +255 q^{-15} +81 q^{-16} -21 q^{-17} -134 q^{-18} -105 q^{-19} +130 q^{-20} +54 q^{-21} +23 q^{-22} -58 q^{-23} -72 q^{-24} +46 q^{-25} +19 q^{-26} +25 q^{-27} -14 q^{-28} -32 q^{-29} +13 q^{-30} + q^{-31} +10 q^{-32} - q^{-33} -9 q^{-34} +4 q^{-35} - q^{-36} +2 q^{-37} -2 q^{-39} + q^{-40} </math> |

coloured_jones_5 = <math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+2 q^{54}-5 q^{53}-2 q^{52}+9 q^{51}+3 q^{50}-2 q^{49}-3 q^{48}-18 q^{47}-8 q^{46}+22 q^{45}+32 q^{44}+14 q^{43}-20 q^{42}-63 q^{41}-52 q^{40}+30 q^{39}+99 q^{38}+101 q^{37}-q^{36}-149 q^{35}-185 q^{34}-39 q^{33}+177 q^{32}+285 q^{31}+144 q^{30}-202 q^{29}-411 q^{28}-251 q^{27}+169 q^{26}+520 q^{25}+428 q^{24}-118 q^{23}-632 q^{22}-588 q^{21}+23 q^{20}+695 q^{19}+777 q^{18}+91 q^{17}-748 q^{16}-931 q^{15}-217 q^{14}+766 q^{13}+1064 q^{12}+339 q^{11}-761 q^{10}-1171 q^9-444 q^8+743 q^7+1238 q^6+535 q^5-705 q^4-1286 q^3-605 q^2+666 q+1291+666 q^{-1} -605 q^{-2} -1286 q^{-3} -705 q^{-4} +535 q^{-5} +1238 q^{-6} +743 q^{-7} -444 q^{-8} -1171 q^{-9} -761 q^{-10} +339 q^{-11} +1064 q^{-12} +766 q^{-13} -217 q^{-14} -931 q^{-15} -748 q^{-16} +91 q^{-17} +777 q^{-18} +695 q^{-19} +23 q^{-20} -588 q^{-21} -632 q^{-22} -118 q^{-23} +428 q^{-24} +520 q^{-25} +169 q^{-26} -251 q^{-27} -411 q^{-28} -202 q^{-29} +144 q^{-30} +285 q^{-31} +177 q^{-32} -39 q^{-33} -185 q^{-34} -149 q^{-35} - q^{-36} +101 q^{-37} +99 q^{-38} +30 q^{-39} -52 q^{-40} -63 q^{-41} -20 q^{-42} +14 q^{-43} +32 q^{-44} +22 q^{-45} -8 q^{-46} -18 q^{-47} -3 q^{-48} -2 q^{-49} +3 q^{-50} +9 q^{-51} -2 q^{-52} -5 q^{-53} +2 q^{-54} - q^{-56} +2 q^{-57} -2 q^{-59} + q^{-60} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{84}-2 q^{83}+2 q^{81}-q^{80}-2 q^{78}+6 q^{77}-6 q^{76}-3 q^{75}+11 q^{74}-q^{73}-2 q^{72}-12 q^{71}+11 q^{70}-16 q^{69}-7 q^{68}+38 q^{67}+16 q^{66}+3 q^{65}-41 q^{64}+q^{63}-68 q^{62}-33 q^{61}+98 q^{60}+93 q^{59}+77 q^{58}-58 q^{57}-37 q^{56}-237 q^{55}-183 q^{54}+124 q^{53}+255 q^{52}+331 q^{51}+93 q^{50}+5 q^{49}-556 q^{48}-604 q^{47}-102 q^{46}+356 q^{45}+782 q^{44}+595 q^{43}+402 q^{42}-827 q^{41}-1294 q^{40}-786 q^{39}+85 q^{38}+1183 q^{37}+1419 q^{36}+1336 q^{35}-712 q^{34}-1957 q^{33}-1851 q^{32}-715 q^{31}+1194 q^{30}+2244 q^{29}+2655 q^{28}-93 q^{27}-2262 q^{26}-2933 q^{25}-1845 q^{24}+746 q^{23}+2752 q^{22}+3943 q^{21}+806 q^{20}-2153 q^{19}-3708 q^{18}-2911 q^{17}+70 q^{16}+2891 q^{15}+4876 q^{14}+1634 q^{13}-1812 q^{12}-4100 q^{11}-3656 q^{10}-556 q^9+2791 q^8+5381 q^7+2212 q^6-1428 q^5-4191 q^4-4055 q^3-1036 q^2+2568 q+5533+2568 q^{-1} -1036 q^{-2} -4055 q^{-3} -4191 q^{-4} -1428 q^{-5} +2212 q^{-6} +5381 q^{-7} +2791 q^{-8} -556 q^{-9} -3656 q^{-10} -4100 q^{-11} -1812 q^{-12} +1634 q^{-13} +4876 q^{-14} +2891 q^{-15} +70 q^{-16} -2911 q^{-17} -3708 q^{-18} -2153 q^{-19} +806 q^{-20} +3943 q^{-21} +2752 q^{-22} +746 q^{-23} -1845 q^{-24} -2933 q^{-25} -2262 q^{-26} -93 q^{-27} +2655 q^{-28} +2244 q^{-29} +1194 q^{-30} -715 q^{-31} -1851 q^{-32} -1957 q^{-33} -712 q^{-34} +1336 q^{-35} +1419 q^{-36} +1183 q^{-37} +85 q^{-38} -786 q^{-39} -1294 q^{-40} -827 q^{-41} +402 q^{-42} +595 q^{-43} +782 q^{-44} +356 q^{-45} -102 q^{-46} -604 q^{-47} -556 q^{-48} +5 q^{-49} +93 q^{-50} +331 q^{-51} +255 q^{-52} +124 q^{-53} -183 q^{-54} -237 q^{-55} -37 q^{-56} -58 q^{-57} +77 q^{-58} +93 q^{-59} +98 q^{-60} -33 q^{-61} -68 q^{-62} + q^{-63} -41 q^{-64} +3 q^{-65} +16 q^{-66} +38 q^{-67} -7 q^{-68} -16 q^{-69} +11 q^{-70} -12 q^{-71} -2 q^{-72} - q^{-73} +11 q^{-74} -3 q^{-75} -6 q^{-76} +6 q^{-77} -2 q^{-78} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} </math> |

coloured_jones_7 = <math>q^{112}-2 q^{111}+2 q^{109}-q^{108}-2 q^{106}+2 q^{105}+5 q^{104}-7 q^{103}-q^{102}+7 q^{101}-q^{100}-12 q^{98}-2 q^{97}+17 q^{96}-13 q^{95}+3 q^{94}+22 q^{93}+7 q^{92}+7 q^{91}-43 q^{90}-35 q^{89}+10 q^{88}-26 q^{87}+25 q^{86}+81 q^{85}+63 q^{84}+69 q^{83}-77 q^{82}-148 q^{81}-104 q^{80}-156 q^{79}+17 q^{78}+206 q^{77}+282 q^{76}+356 q^{75}+55 q^{74}-268 q^{73}-435 q^{72}-661 q^{71}-340 q^{70}+204 q^{69}+654 q^{68}+1130 q^{67}+788 q^{66}+49 q^{65}-750 q^{64}-1693 q^{63}-1545 q^{62}-598 q^{61}+680 q^{60}+2252 q^{59}+2499 q^{58}+1547 q^{57}-198 q^{56}-2717 q^{55}-3672 q^{54}-2860 q^{53}-655 q^{52}+2844 q^{51}+4768 q^{50}+4537 q^{49}+2104 q^{48}-2562 q^{47}-5828 q^{46}-6373 q^{45}-3891 q^{44}+1784 q^{43}+6441 q^{42}+8212 q^{41}+6132 q^{40}-511 q^{39}-6764 q^{38}-9928 q^{37}-8380 q^{36}-1108 q^{35}+6552 q^{34}+11294 q^{33}+10685 q^{32}+2988 q^{31}-6052 q^{30}-12328 q^{29}-12727 q^{28}-4870 q^{27}+5238 q^{26}+12969 q^{25}+14476 q^{24}+6663 q^{23}-4286 q^{22}-13308 q^{21}-15867 q^{20}-8241 q^{19}+3344 q^{18}+13388 q^{17}+16876 q^{16}+9543 q^{15}-2421 q^{14}-13285 q^{13}-17618 q^{12}-10578 q^{11}+1640 q^{10}+13082 q^9+18052 q^8+11361 q^7-915 q^6-12789 q^5-18322 q^4-11965 q^3+311 q^2+12426 q+18379+12426 q^{-1} +311 q^{-2} -11965 q^{-3} -18322 q^{-4} -12789 q^{-5} -915 q^{-6} +11361 q^{-7} +18052 q^{-8} +13082 q^{-9} +1640 q^{-10} -10578 q^{-11} -17618 q^{-12} -13285 q^{-13} -2421 q^{-14} +9543 q^{-15} +16876 q^{-16} +13388 q^{-17} +3344 q^{-18} -8241 q^{-19} -15867 q^{-20} -13308 q^{-21} -4286 q^{-22} +6663 q^{-23} +14476 q^{-24} +12969 q^{-25} +5238 q^{-26} -4870 q^{-27} -12727 q^{-28} -12328 q^{-29} -6052 q^{-30} +2988 q^{-31} +10685 q^{-32} +11294 q^{-33} +6552 q^{-34} -1108 q^{-35} -8380 q^{-36} -9928 q^{-37} -6764 q^{-38} -511 q^{-39} +6132 q^{-40} +8212 q^{-41} +6441 q^{-42} +1784 q^{-43} -3891 q^{-44} -6373 q^{-45} -5828 q^{-46} -2562 q^{-47} +2104 q^{-48} +4537 q^{-49} +4768 q^{-50} +2844 q^{-51} -655 q^{-52} -2860 q^{-53} -3672 q^{-54} -2717 q^{-55} -198 q^{-56} +1547 q^{-57} +2499 q^{-58} +2252 q^{-59} +680 q^{-60} -598 q^{-61} -1545 q^{-62} -1693 q^{-63} -750 q^{-64} +49 q^{-65} +788 q^{-66} +1130 q^{-67} +654 q^{-68} +204 q^{-69} -340 q^{-70} -661 q^{-71} -435 q^{-72} -268 q^{-73} +55 q^{-74} +356 q^{-75} +282 q^{-76} +206 q^{-77} +17 q^{-78} -156 q^{-79} -104 q^{-80} -148 q^{-81} -77 q^{-82} +69 q^{-83} +63 q^{-84} +81 q^{-85} +25 q^{-86} -26 q^{-87} +10 q^{-88} -35 q^{-89} -43 q^{-90} +7 q^{-91} +7 q^{-92} +22 q^{-93} +3 q^{-94} -13 q^{-95} +17 q^{-96} -2 q^{-97} -12 q^{-98} - q^{-100} +7 q^{-101} - q^{-102} -7 q^{-103} +5 q^{-104} +2 q^{-105} -2 q^{-106} - q^{-108} +2 q^{-109} -2 q^{-111} + q^{-112} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 12]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 8, 11, 7], X[8, 3, 9, 4], X[2, 9, 3, 10],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 12]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 8, 11, 7], X[8, 3, 9, 4], X[2, 9, 3, 10],
X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 15, 13, 16], X[6, 14, 7, 13]]</nowiki></pre></td></tr>
X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 15, 13, 16], X[6, 14, 7, 13]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 12]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 12]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 12]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 10, 2, 16, 6, 12]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 12]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, -1, -3, 2, 4, -3, 4}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 12]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 8}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 12]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 10, 2, 16, 6, 12]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 12]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_12_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 12]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 12]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, 2, -1, -3, 2, 4, -3, 4}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 12]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 7 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 12]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 12]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_12_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 12]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 2, 2, 2, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 12]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 7 2
13 + t - - - 7 t + t
13 + t - - - 7 t + t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 12]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 12]][z]</nowiki></code></td></tr>
1 - 3 z + z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 12]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 - 3 z + z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 12]], KnotSignature[Knot[8, 12]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{29, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 12]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 5 2 3 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 12]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 12]], KnotSignature[Knot[8, 12]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{29, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 12]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 4 5 2 3 4
5 + q - -- + -- - - - 5 q + 4 q - 2 q + q
5 + q - -- + -- - - - 5 q + 4 q - 2 q + q
3 2 q
3 2 q
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 12]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 12]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 -12 -10 -8 -4 -2 2 4 8 10 12
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 12]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 12]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 -12 -10 -8 -4 -2 2 4 8 10 12
-1 + q + q - q + q - q + q + q - q + q - q + q +
-1 + q + q - q + q - q + q + q - q + q - q + q +
14
14
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 12]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 12]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-4 -2 2 4 2 2 z 2 2 4
-4 -2 2 4 2 2 z 2 2 4
1 + a - a - a + a + z - ---- - 2 a z + z
1 + a - a - a + a + z - ---- - 2 a z + z
2
2
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 12]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 12]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
-4 -2 2 4 z 3 2 z 2 z 2 2 4 2
-4 -2 2 4 z 3 2 z 2 z 2 2 4 2
1 + a + a + a + a + -- + a z - ---- - ---- - 2 a z - 2 a z -
1 + a + a + a + a + -- + a z - ---- - ---- - 2 a z - 2 a z -
Line 165: Line 206:
---- + ---- + 2 a z + 2 a z + 4 z + ---- + 2 a z + -- + a z
---- + ---- + 2 a z + 2 a z + 4 z + ---- + 2 a z + -- + a z
3 a 2 a
3 a 2 a
a a</nowiki></pre></td></tr>
a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 12]], Vassiliev[3][Knot[8, 12]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 12]], Vassiliev[3][Knot[8, 12]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 12]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 1 1 3 1 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 12]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 1 1 3 1 2 3
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t +
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q 9 4 7 3 5 3 5 2 3 2 3 q t
Line 177: Line 226:
3 3 2 5 2 5 3 7 3 9 4
3 3 2 5 2 5 3 7 3 9 4
2 q t + q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr>
2 q t + q t + 3 q t + q t + q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 12], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 6 8 3 18 15 10 30 18 16
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 12], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 2 6 8 3 18 15 10 30 18 16
35 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 16 q -
35 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 16 q -
11 9 8 7 6 5 4 3 2 q
11 9 8 7 6 5 4 3 2 q
Line 189: Line 242:
12
12
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 17:02, 1 September 2005

8 11.gif

8_11

8 13.gif

8_13

8 12.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 12's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 12 at Knotilus!


In symmetric decorative form

Knot presentations

Planar diagram presentation X4251 X10,8,11,7 X8394 X2,9,3,10 X14,6,15,5 X16,11,1,12 X12,15,13,16 X6,14,7,13
Gauss code 1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6
Dowker-Thistlethwaite code 4 8 14 10 2 16 6 12
Conway Notation [2222]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 8, width is 5,

Braid index is 5

8 12 ML.gif 8 12 AP.gif
[{3, 9}, {4, 2}, {1, 3}, {2, 7}, {6, 8}, {7, 5}, {10, 6}, {9, 4}, {5, 10}, {8, 1}]

[edit Notes on presentations of 8 12]

Knot 8_12.
A graph, knot 8_12.

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-5]
Hyperbolic Volume 8.93586
A-Polynomial See Data:8 12/A-polynomial

[edit Notes for 8 12's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 12's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 29, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-3, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 12. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234χ
9        11
7       1 -1
5      31 2
3     21  -1
1    33   0
-1   33    0
-3  12     -1
-5 13      2
-7 1       -1
-91        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials