8 13: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- provide an anchor so we can return to the top of the page -->
k = 13 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,5,-6,7,-8,2,-3,4,-7,6,-5,3/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
{{Rolfsen Knot Page Header|n=8|k=13|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,5,-6,7,-8,2,-3,4,-7,6,-5,3/goTop.html}}
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>

</table> |
<br style="clear:both" />
braid_crossings = 9 |

braid_width = 4 |
{{:{{PAGENAME}} Further Notes and Views}}
braid_index = 4 |

same_alexander = |
{{Knot Presentations}}
same_jones = |
{{3D Invariants}}
khovanov_table = <table border=1>
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=15.3846%>&chi;</td></tr>
<td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
Line 39: Line 38:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{15}-2 q^{14}-q^{13}+6 q^{12}-5 q^{11}-6 q^{10}+15 q^9-6 q^8-15 q^7+24 q^6-5 q^5-24 q^4+28 q^3-q^2-27 q+26+2 q^{-1} -22 q^{-2} +17 q^{-3} +2 q^{-4} -12 q^{-5} +7 q^{-6} + q^{-7} -3 q^{-8} + q^{-9} </math> |
{{Computer Talk Header}}
coloured_jones_3 = <math>-q^{30}+2 q^{29}+q^{28}-2 q^{27}-5 q^{26}+4 q^{25}+9 q^{24}-3 q^{23}-17 q^{22}+q^{21}+24 q^{20}+6 q^{19}-32 q^{18}-15 q^{17}+39 q^{16}+25 q^{15}-41 q^{14}-40 q^{13}+46 q^{12}+48 q^{11}-41 q^{10}-64 q^9+42 q^8+71 q^7-35 q^6-81 q^5+33 q^4+82 q^3-24 q^2-84 q+20+77 q^{-1} -12 q^{-2} -69 q^{-3} +9 q^{-4} +54 q^{-5} -2 q^{-6} -42 q^{-7} +2 q^{-8} +27 q^{-9} + q^{-10} -19 q^{-11} + q^{-12} +9 q^{-13} -4 q^{-15} - q^{-16} +3 q^{-17} - q^{-18} </math> |

coloured_jones_4 = <math>q^{50}-2 q^{49}-q^{48}+2 q^{47}+q^{46}+6 q^{45}-8 q^{44}-7 q^{43}+2 q^{42}+3 q^{41}+26 q^{40}-12 q^{39}-23 q^{38}-12 q^{37}-4 q^{36}+65 q^{35}+3 q^{34}-31 q^{33}-45 q^{32}-43 q^{31}+104 q^{30}+41 q^{29}-7 q^{28}-77 q^{27}-115 q^{26}+116 q^{25}+79 q^{24}+53 q^{23}-82 q^{22}-198 q^{21}+96 q^{20}+97 q^{19}+128 q^{18}-59 q^{17}-269 q^{16}+56 q^{15}+98 q^{14}+200 q^{13}-26 q^{12}-319 q^{11}+12 q^{10}+89 q^9+253 q^8+8 q^7-338 q^6-31 q^5+69 q^4+279 q^3+40 q^2-318 q-59+36 q^{-1} +258 q^{-2} +65 q^{-3} -251 q^{-4} -62 q^{-5} -4 q^{-6} +192 q^{-7} +70 q^{-8} -161 q^{-9} -37 q^{-10} -28 q^{-11} +109 q^{-12} +50 q^{-13} -83 q^{-14} -8 q^{-15} -25 q^{-16} +47 q^{-17} +22 q^{-18} -36 q^{-19} +5 q^{-20} -12 q^{-21} +15 q^{-22} +7 q^{-23} -12 q^{-24} +3 q^{-25} -3 q^{-26} +4 q^{-27} + q^{-28} -3 q^{-29} + q^{-30} </math> |
<table>
coloured_jones_5 = <math>-q^{75}+2 q^{74}+q^{73}-2 q^{72}-q^{71}-2 q^{70}-2 q^{69}+6 q^{68}+9 q^{67}-2 q^{66}-7 q^{65}-11 q^{64}-12 q^{63}+9 q^{62}+29 q^{61}+20 q^{60}-5 q^{59}-34 q^{58}-48 q^{57}-15 q^{56}+47 q^{55}+73 q^{54}+46 q^{53}-33 q^{52}-105 q^{51}-94 q^{50}+6 q^{49}+118 q^{48}+150 q^{47}+52 q^{46}-115 q^{45}-203 q^{44}-123 q^{43}+77 q^{42}+239 q^{41}+211 q^{40}-11 q^{39}-254 q^{38}-298 q^{37}-72 q^{36}+233 q^{35}+365 q^{34}+190 q^{33}-192 q^{32}-434 q^{31}-281 q^{30}+121 q^{29}+454 q^{28}+409 q^{27}-44 q^{26}-493 q^{25}-488 q^{24}-38 q^{23}+478 q^{22}+596 q^{21}+122 q^{20}-499 q^{19}-653 q^{18}-198 q^{17}+475 q^{16}+735 q^{15}+270 q^{14}-481 q^{13}-774 q^{12}-336 q^{11}+450 q^{10}+832 q^9+391 q^8-435 q^7-837 q^6-449 q^5+383 q^4+849 q^3+490 q^2-336 q-805-518 q^{-1} +249 q^{-2} +754 q^{-3} +525 q^{-4} -178 q^{-5} -649 q^{-6} -506 q^{-7} +88 q^{-8} +545 q^{-9} +455 q^{-10} -28 q^{-11} -408 q^{-12} -386 q^{-13} -29 q^{-14} +302 q^{-15} +298 q^{-16} +40 q^{-17} -184 q^{-18} -216 q^{-19} -56 q^{-20} +123 q^{-21} +139 q^{-22} +33 q^{-23} -59 q^{-24} -80 q^{-25} -32 q^{-26} +37 q^{-27} +45 q^{-28} +11 q^{-29} -17 q^{-30} -20 q^{-31} -4 q^{-32} +5 q^{-33} +11 q^{-34} +5 q^{-35} -10 q^{-36} -3 q^{-37} +4 q^{-38} +3 q^{-41} -4 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} </math> |
<tr valign=top>
coloured_jones_6 = <math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+4 q^{98}-8 q^{97}-9 q^{96}+5 q^{95}+6 q^{94}+12 q^{93}+16 q^{91}-22 q^{90}-35 q^{89}-9 q^{88}+5 q^{87}+35 q^{86}+22 q^{85}+72 q^{84}-21 q^{83}-80 q^{82}-71 q^{81}-50 q^{80}+25 q^{79}+48 q^{78}+207 q^{77}+70 q^{76}-60 q^{75}-148 q^{74}-188 q^{73}-118 q^{72}-42 q^{71}+346 q^{70}+265 q^{69}+146 q^{68}-77 q^{67}-283 q^{66}-387 q^{65}-373 q^{64}+283 q^{63}+390 q^{62}+491 q^{61}+264 q^{60}-98 q^{59}-565 q^{58}-852 q^{57}-94 q^{56}+195 q^{55}+718 q^{54}+750 q^{53}+454 q^{52}-405 q^{51}-1201 q^{50}-632 q^{49}-372 q^{48}+593 q^{47}+1106 q^{46}+1193 q^{45}+118 q^{44}-1213 q^{43}-1073 q^{42}-1118 q^{41}+124 q^{40}+1165 q^{39}+1866 q^{38}+808 q^{37}-921 q^{36}-1286 q^{35}-1807 q^{34}-489 q^{33}+981 q^{32}+2349 q^{31}+1453 q^{30}-504 q^{29}-1325 q^{28}-2337 q^{27}-1057 q^{26}+720 q^{25}+2671 q^{24}+1961 q^{23}-114 q^{22}-1313 q^{21}-2725 q^{20}-1506 q^{19}+492 q^{18}+2897 q^{17}+2343 q^{16}+215 q^{15}-1294 q^{14}-3006 q^{13}-1861 q^{12}+281 q^{11}+3008 q^{10}+2627 q^9+542 q^8-1193 q^7-3132 q^6-2158 q^5-11 q^4+2891 q^3+2759 q^2+906 q-888-2973 q^{-1} -2331 q^{-2} -420 q^{-3} +2429 q^{-4} +2600 q^{-5} +1207 q^{-6} -376 q^{-7} -2423 q^{-8} -2213 q^{-9} -802 q^{-10} +1667 q^{-11} +2056 q^{-12} +1246 q^{-13} +147 q^{-14} -1585 q^{-15} -1725 q^{-16} -928 q^{-17} +876 q^{-18} +1271 q^{-19} +950 q^{-20} +421 q^{-21} -775 q^{-22} -1040 q^{-23} -739 q^{-24} +343 q^{-25} +570 q^{-26} +506 q^{-27} +391 q^{-28} -266 q^{-29} -463 q^{-30} -418 q^{-31} +119 q^{-32} +167 q^{-33} +168 q^{-34} +228 q^{-35} -63 q^{-36} -148 q^{-37} -172 q^{-38} +57 q^{-39} +25 q^{-40} +19 q^{-41} +94 q^{-42} -12 q^{-43} -35 q^{-44} -54 q^{-45} +34 q^{-46} -2 q^{-47} -10 q^{-48} +28 q^{-49} -5 q^{-50} -5 q^{-51} -15 q^{-52} +17 q^{-53} -2 q^{-54} -8 q^{-55} +8 q^{-56} -3 q^{-57} -3 q^{-59} +4 q^{-60} + q^{-61} -3 q^{-62} + q^{-63} </math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
coloured_jones_7 = <math>-q^{140}+2 q^{139}+q^{138}-2 q^{137}-q^{136}-2 q^{135}+2 q^{134}-2 q^{132}+8 q^{131}+6 q^{130}-4 q^{129}-6 q^{128}-14 q^{127}-2 q^{126}+3 q^{125}-6 q^{124}+25 q^{123}+28 q^{122}+10 q^{121}-5 q^{120}-48 q^{119}-35 q^{118}-22 q^{117}-32 q^{116}+45 q^{115}+85 q^{114}+82 q^{113}+69 q^{112}-57 q^{111}-101 q^{110}-121 q^{109}-170 q^{108}-25 q^{107}+102 q^{106}+211 q^{105}+300 q^{104}+122 q^{103}-33 q^{102}-201 q^{101}-442 q^{100}-335 q^{99}-149 q^{98}+141 q^{97}+551 q^{96}+538 q^{95}+423 q^{94}+101 q^{93}-521 q^{92}-731 q^{91}-781 q^{90}-482 q^{89}+315 q^{88}+768 q^{87}+1112 q^{86}+1011 q^{85}+115 q^{84}-594 q^{83}-1312 q^{82}-1559 q^{81}-751 q^{80}+118 q^{79}+1284 q^{78}+2043 q^{77}+1489 q^{76}+608 q^{75}-924 q^{74}-2293 q^{73}-2229 q^{72}-1563 q^{71}+231 q^{70}+2253 q^{69}+2838 q^{68}+2603 q^{67}+735 q^{66}-1864 q^{65}-3166 q^{64}-3609 q^{63}-1943 q^{62}+1125 q^{61}+3246 q^{60}+4506 q^{59}+3170 q^{58}-168 q^{57}-2947 q^{56}-5125 q^{55}-4448 q^{54}-1027 q^{53}+2453 q^{52}+5588 q^{51}+5550 q^{50}+2183 q^{49}-1703 q^{48}-5715 q^{47}-6547 q^{46}-3436 q^{45}+894 q^{44}+5790 q^{43}+7334 q^{42}+4473 q^{41}-40 q^{40}-5607 q^{39}-7992 q^{38}-5517 q^{37}-752 q^{36}+5502 q^{35}+8509 q^{34}+6296 q^{33}+1474 q^{32}-5273 q^{31}-8946 q^{30}-7071 q^{29}-2070 q^{28}+5177 q^{27}+9302 q^{26}+7641 q^{25}+2595 q^{24}-5016 q^{23}-9657 q^{22}-8219 q^{21}-3010 q^{20}+4948 q^{19}+9926 q^{18}+8672 q^{17}+3456 q^{16}-4798 q^{15}-10186 q^{14}-9151 q^{13}-3854 q^{12}+4617 q^{11}+10293 q^{10}+9531 q^9+4354 q^8-4240 q^7-10292 q^6-9891 q^5-4866 q^4+3744 q^3+10026 q^2+10041 q+5442-2978 q^{-1} -9500 q^{-2} -10054 q^{-3} -5946 q^{-4} +2107 q^{-5} +8639 q^{-6} +9702 q^{-7} +6341 q^{-8} -1071 q^{-9} -7507 q^{-10} -9069 q^{-11} -6480 q^{-12} +92 q^{-13} +6140 q^{-14} +8055 q^{-15} +6347 q^{-16} +783 q^{-17} -4706 q^{-18} -6812 q^{-19} -5852 q^{-20} -1392 q^{-21} +3288 q^{-22} +5393 q^{-23} +5128 q^{-24} +1742 q^{-25} -2107 q^{-26} -4026 q^{-27} -4165 q^{-28} -1758 q^{-29} +1145 q^{-30} +2734 q^{-31} +3215 q^{-32} +1621 q^{-33} -534 q^{-34} -1768 q^{-35} -2280 q^{-36} -1257 q^{-37} +140 q^{-38} +973 q^{-39} +1532 q^{-40} +966 q^{-41} +22 q^{-42} -532 q^{-43} -954 q^{-44} -606 q^{-45} -73 q^{-46} +203 q^{-47} +554 q^{-48} +390 q^{-49} +75 q^{-50} -72 q^{-51} -317 q^{-52} -209 q^{-53} -37 q^{-54} +8 q^{-55} +153 q^{-56} +98 q^{-57} +27 q^{-58} +30 q^{-59} -88 q^{-60} -61 q^{-61} +4 q^{-62} -9 q^{-63} +35 q^{-64} +5 q^{-65} +29 q^{-67} -22 q^{-68} -16 q^{-69} +6 q^{-70} - q^{-71} +9 q^{-72} -7 q^{-73} -5 q^{-74} +13 q^{-75} -4 q^{-76} -5 q^{-77} +3 q^{-78} +3 q^{-80} -4 q^{-81} - q^{-82} +3 q^{-83} - q^{-84} </math> |
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
computer_talk =
</tr>
<table>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 13]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 13]]</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 16], X[5, 13, 6, 12],
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 13]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 16], X[5, 13, 6, 12],
X[15, 7, 16, 6], X[7, 15, 8, 14], X[13, 9, 14, 8], X[9, 2, 10, 3]]</nowiki></pre></td></tr>
X[15, 7, 16, 6], X[7, 15, 8, 14], X[13, 9, 14, 8], X[9, 2, 10, 3]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 13]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 1, -4, 5, -6, 7, -8, 2, -3, 4, -7, 6, -5, 3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[8, 13]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, 2, 2, 3, -2, 3}]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 13]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 13]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 7 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 8, -2, 1, -4, 5, -6, 7, -8, 2, -3, 4, -7, 6, -5, 3]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 13]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 2, 16, 8, 6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 13]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, 2, 2, 3, -2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 13]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 13]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_13_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 13]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {4, 5}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 13]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 7 2
11 + -- - - - 7 t + 2 t
11 + -- - - - 7 t + 2 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 13]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + z + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 13]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 13]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 13]], KnotSignature[Knot[8, 13]]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{29, 0}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 + z + 2 z</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[8, 13]][q]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 4 2 3 4 5
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 13]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 13]], KnotSignature[Knot[8, 13]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{29, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 13]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 4 2 3 4 5
5 - q + -- - - - 5 q + 5 q - 3 q + 2 q - q
5 - q + -- - - - 5 q + 5 q - 3 q + 2 q - q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 13]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 13]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 -4 -2 2 4 6 8 10 16
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
-1 - q + q + q - q + q + q + q + q + 2 q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 13]][a, z]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 13]}</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 3
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 13]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -8 -6 -4 -2 2 4 6 8 10 16
-1 - q + q + q - q + q + q + q + q + 2 q - q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 13]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4
-4 2 2 z 2 z 2 2 4 z
-a + -- + z - -- + ---- - a z + z + --
2 4 2 2
a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 13]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 3
-4 2 2 z 4 z 3 z 5 z 7 z 2 2 3 z
-4 2 2 z 4 z 3 z 5 z 7 z 2 2 3 z
-a - -- + --- + --- + --- + a z + ---- + ---- - 2 a z - ---- -
-a - -- + --- + --- + --- + a z + ---- + ---- - 2 a z - ---- -
Line 98: Line 203:
-- + ---- + 4 a z + 3 z + ---- + ---- + -- + --
-- + ---- + 4 a z + 3 z + ---- + ---- + -- + --
3 a 4 2 3 a
3 a 4 2 3 a
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 13]], Vassiliev[3][Knot[8, 13]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 13]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 2 1 2 2 3
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 13]], Vassiliev[3][Knot[8, 13]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 13]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 2 1 2 2 3
- + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 2 q t +
- + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 2 q t +
q 7 3 5 2 3 2 3 q t
q 7 3 5 2 3 2 3 q t
Line 108: Line 223:
3 2 5 2 5 3 7 3 7 4 9 4 11 5
3 2 5 2 5 3 7 3 7 4 9 4 11 5
2 q t + 3 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr>
2 q t + 3 q t + q t + 2 q t + q t + q t + q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
[[Category:Knot Page]]
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 13], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 3 -7 7 12 2 17 22 2 2 3
26 + q - -- + q + -- - -- + -- + -- - -- + - - 27 q - q + 28 q -
8 6 5 4 3 2 q
q q q q q q
4 5 6 7 8 9 10 11 12
24 q - 5 q + 24 q - 15 q - 6 q + 15 q - 6 q - 5 q + 6 q -
13 14 15
q - 2 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:03, 1 September 2005

8 12.gif

8_12

8 14.gif

8_14

8 13.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 13 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X15,7,16,6 X7,15,8,14 X13,9,14,8 X9,2,10,3
Gauss code -1, 8, -2, 1, -4, 5, -6, 7, -8, 2, -3, 4, -7, 6, -5, 3
Dowker-Thistlethwaite code 4 10 12 14 2 16 8 6
Conway Notation [31112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

8 13 ML.gif 8 13 AP.gif
[{10, 5}, {1, 8}, {6, 9}, {8, 10}, {9, 4}, {5, 2}, {3, 1}, {4, 7}, {2, 6}, {7, 3}]

[edit Notes on presentations of 8 13]

Knot 8_13.
A graph, knot 8_13.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-6]
Hyperbolic Volume 8.53123
A-Polynomial See Data:8 13/A-polynomial

[edit Notes for 8 13's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 13's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 29, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
11        1-1
9       1 1
7      21 -1
5     31  2
3    22   0
1   33    0
-1  23     1
-3 12      -1
-5 2       2
-71        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials