9 16: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=9_16}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 9 | |
|||
k = 16 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-1,3,-5,4,-8,7,-6,9,-2,8,-7,6,-3,5,-4/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{33}-3 q^{32}+2 q^{31}+6 q^{30}-14 q^{29}+7 q^{28}+16 q^{27}-31 q^{26}+12 q^{25}+28 q^{24}-42 q^{23}+10 q^{22}+35 q^{21}-42 q^{20}+3 q^{19}+35 q^{18}-32 q^{17}-4 q^{16}+27 q^{15}-17 q^{14}-7 q^{13}+15 q^{12}-5 q^{11}-4 q^{10}+5 q^9-q^7+q^6</math> | |
|||
coloured_jones_3 = <math>-q^{63}+3 q^{62}-2 q^{61}-3 q^{60}+2 q^{59}+8 q^{58}-5 q^{57}-16 q^{56}+13 q^{55}+24 q^{54}-22 q^{53}-38 q^{52}+33 q^{51}+58 q^{50}-45 q^{49}-78 q^{48}+51 q^{47}+101 q^{46}-56 q^{45}-115 q^{44}+48 q^{43}+131 q^{42}-43 q^{41}-133 q^{40}+26 q^{39}+137 q^{38}-14 q^{37}-128 q^{36}-4 q^{35}+120 q^{34}+20 q^{33}-109 q^{32}-30 q^{31}+87 q^{30}+45 q^{29}-74 q^{28}-44 q^{27}+46 q^{26}+51 q^{25}-35 q^{24}-37 q^{23}+9 q^{22}+37 q^{21}-7 q^{20}-19 q^{19}-5 q^{18}+15 q^{17}+2 q^{16}-4 q^{15}-4 q^{14}+4 q^{13}+q^{12}-q^{10}+q^9</math> | |
|||
coloured_jones_4 = <math>q^{102}-3 q^{101}+2 q^{100}+3 q^{99}-5 q^{98}+4 q^{97}-10 q^{96}+11 q^{95}+10 q^{94}-23 q^{93}+11 q^{92}-21 q^{91}+38 q^{90}+22 q^{89}-75 q^{88}+10 q^{87}-19 q^{86}+111 q^{85}+44 q^{84}-180 q^{83}-32 q^{82}-12 q^{81}+247 q^{80}+114 q^{79}-311 q^{78}-138 q^{77}-41 q^{76}+401 q^{75}+236 q^{74}-390 q^{73}-252 q^{72}-130 q^{71}+490 q^{70}+360 q^{69}-377 q^{68}-307 q^{67}-238 q^{66}+479 q^{65}+426 q^{64}-296 q^{63}-285 q^{62}-324 q^{61}+394 q^{60}+434 q^{59}-184 q^{58}-219 q^{57}-378 q^{56}+272 q^{55}+400 q^{54}-57 q^{53}-134 q^{52}-401 q^{51}+132 q^{50}+330 q^{49}+59 q^{48}-32 q^{47}-371 q^{46}-3 q^{45}+215 q^{44}+124 q^{43}+72 q^{42}-273 q^{41}-88 q^{40}+81 q^{39}+109 q^{38}+127 q^{37}-135 q^{36}-89 q^{35}-15 q^{34}+44 q^{33}+109 q^{32}-33 q^{31}-40 q^{30}-36 q^{29}-4 q^{28}+53 q^{27}+q^{26}-3 q^{25}-17 q^{24}-12 q^{23}+16 q^{22}+q^{21}+4 q^{20}-3 q^{19}-5 q^{18}+4 q^{17}+q^{15}-q^{13}+q^{12}</math> | |
|||
coloured_jones_5 = <math>-q^{150}+3 q^{149}-2 q^{148}-3 q^{147}+5 q^{146}-q^{145}-2 q^{144}+4 q^{143}-5 q^{142}-6 q^{141}+12 q^{140}+6 q^{139}-10 q^{138}-8 q^{137}-7 q^{136}+13 q^{135}+30 q^{134}+10 q^{133}-44 q^{132}-70 q^{131}-q^{130}+99 q^{129}+125 q^{128}+13 q^{127}-181 q^{126}-248 q^{125}-37 q^{124}+307 q^{123}+419 q^{122}+99 q^{121}-435 q^{120}-660 q^{119}-232 q^{118}+558 q^{117}+959 q^{116}+427 q^{115}-648 q^{114}-1248 q^{113}-696 q^{112}+651 q^{111}+1538 q^{110}+992 q^{109}-600 q^{108}-1732 q^{107}-1281 q^{106}+449 q^{105}+1865 q^{104}+1528 q^{103}-293 q^{102}-1862 q^{101}-1710 q^{100}+88 q^{99}+1826 q^{98}+1797 q^{97}+70 q^{96}-1679 q^{95}-1828 q^{94}-240 q^{93}+1547 q^{92}+1788 q^{91}+348 q^{90}-1340 q^{89}-1723 q^{88}-481 q^{87}+1166 q^{86}+1629 q^{85}+575 q^{84}-945 q^{83}-1520 q^{82}-693 q^{81}+721 q^{80}+1400 q^{79}+799 q^{78}-486 q^{77}-1246 q^{76}-877 q^{75}+208 q^{74}+1065 q^{73}+962 q^{72}+17 q^{71}-833 q^{70}-943 q^{69}-289 q^{68}+586 q^{67}+914 q^{66}+436 q^{65}-304 q^{64}-751 q^{63}-600 q^{62}+64 q^{61}+600 q^{60}+573 q^{59}+160 q^{58}-343 q^{57}-573 q^{56}-277 q^{55}+180 q^{54}+391 q^{53}+334 q^{52}+36 q^{51}-298 q^{50}-300 q^{49}-92 q^{48}+109 q^{47}+225 q^{46}+171 q^{45}-44 q^{44}-140 q^{43}-120 q^{42}-44 q^{41}+62 q^{40}+109 q^{39}+36 q^{38}-15 q^{37}-46 q^{36}-48 q^{35}-9 q^{34}+34 q^{33}+17 q^{32}+12 q^{31}-2 q^{30}-17 q^{29}-11 q^{28}+8 q^{27}+q^{26}+4 q^{25}+4 q^{24}-3 q^{23}-4 q^{22}+3 q^{21}+q^{18}-q^{16}+q^{15}</math> | |
|||
coloured_jones_6 = <math>q^{207}-3 q^{206}+2 q^{205}+3 q^{204}-5 q^{203}+q^{202}-q^{201}+8 q^{200}-10 q^{199}+q^{198}+17 q^{197}-23 q^{196}+q^{195}+6 q^{194}+24 q^{193}-26 q^{192}-13 q^{191}+35 q^{190}-54 q^{189}+19 q^{188}+51 q^{187}+68 q^{186}-93 q^{185}-99 q^{184}+21 q^{183}-98 q^{182}+147 q^{181}+247 q^{180}+198 q^{179}-272 q^{178}-446 q^{177}-200 q^{176}-199 q^{175}+539 q^{174}+890 q^{173}+648 q^{172}-544 q^{171}-1305 q^{170}-1037 q^{169}-654 q^{168}+1196 q^{167}+2297 q^{166}+1918 q^{165}-522 q^{164}-2629 q^{163}-2832 q^{162}-2034 q^{161}+1601 q^{160}+4268 q^{159}+4290 q^{158}+477 q^{157}-3678 q^{156}-5203 q^{155}-4535 q^{154}+966 q^{153}+5831 q^{152}+7137 q^{151}+2582 q^{150}-3554 q^{149}-6995 q^{148}-7347 q^{147}-783 q^{146}+6062 q^{145}+9195 q^{144}+4909 q^{143}-2256 q^{142}-7362 q^{141}-9231 q^{140}-2737 q^{139}+5074 q^{138}+9749 q^{137}+6359 q^{136}-663 q^{135}-6541 q^{134}-9681 q^{133}-3987 q^{132}+3697 q^{131}+9141 q^{130}+6665 q^{129}+506 q^{128}-5301 q^{127}-9131 q^{126}-4452 q^{125}+2476 q^{124}+8063 q^{123}+6330 q^{122}+1292 q^{121}-4056 q^{120}-8208 q^{119}-4620 q^{118}+1315 q^{117}+6829 q^{116}+5872 q^{115}+2104 q^{114}-2692 q^{113}-7128 q^{112}-4838 q^{111}-74 q^{110}+5299 q^{109}+5338 q^{108}+3092 q^{107}-988 q^{106}-5677 q^{105}-4955 q^{104}-1685 q^{103}+3273 q^{102}+4375 q^{101}+3912 q^{100}+959 q^{99}-3617 q^{98}-4465 q^{97}-3031 q^{96}+919 q^{95}+2673 q^{94}+3919 q^{93}+2566 q^{92}-1153 q^{91}-3027 q^{90}-3384 q^{89}-1063 q^{88}+495 q^{87}+2764 q^{86}+3042 q^{85}+900 q^{84}-989 q^{83}-2437 q^{82}-1830 q^{81}-1255 q^{80}+933 q^{79}+2164 q^{78}+1669 q^{77}+638 q^{76}-815 q^{75}-1252 q^{74}-1740 q^{73}-471 q^{72}+698 q^{71}+1143 q^{70}+1074 q^{69}+354 q^{68}-183 q^{67}-1111 q^{66}-780 q^{65}-255 q^{64}+248 q^{63}+591 q^{62}+551 q^{61}+397 q^{60}-306 q^{59}-382 q^{58}-366 q^{57}-181 q^{56}+57 q^{55}+239 q^{54}+345 q^{53}+38 q^{52}-24 q^{51}-133 q^{50}-144 q^{49}-105 q^{48}+11 q^{47}+131 q^{46}+38 q^{45}+53 q^{44}-30 q^{42}-61 q^{41}-28 q^{40}+30 q^{39}-2 q^{38}+21 q^{37}+13 q^{36}+6 q^{35}-17 q^{34}-12 q^{33}+9 q^{32}-6 q^{31}+3 q^{30}+3 q^{29}+5 q^{28}-3 q^{27}-4 q^{26}+4 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[18, 8, 1, 7], |
|||
X[6, 18, 7, 17], X[10, 16, 11, 15], X[14, 10, 15, 9], |
|||
X[8, 14, 9, 13], X[2, 12, 3, 11]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 8, 10, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, 1, 2, 2, -1, 2, 2, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 16]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_16_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 16]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, {4, 7}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 16]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 5 8 2 3 |
|||
-9 + -- - -- + - + 8 t - 5 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 16]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 6 z + 7 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 16]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 16]], KnotSignature[Knot[9, 16]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{39, 6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 16]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 4 5 6 7 8 9 10 11 12 |
|||
q - q + 4 q - 5 q + 6 q - 7 q + 6 q - 5 q + 3 q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 16]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 16]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 10 14 16 18 20 22 26 34 36 |
|||
q + 3 q + q + 2 q + q - 2 q - 3 q + q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 16]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 4 6 6 |
|||
-3 4 2 z 8 z z 3 z 5 z z z |
|||
-- + -- - ---- + ---- - --- + ---- + ---- + -- + -- |
|||
8 6 10 6 10 8 6 8 6 |
|||
a a a a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 16]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 2 |
|||
-3 4 2 z 2 z 4 z 4 z z 2 z z 6 z 8 z |
|||
-- - -- + --- + --- + --- + --- - --- + ---- + --- + ---- + ---- + |
|||
8 6 13 11 9 7 14 12 10 8 6 |
|||
a a a a a a a a a a a |
|||
3 3 3 3 3 4 4 4 4 4 |
|||
z 5 z 5 z z 2 z 3 z 6 z 8 z 4 z 5 z |
|||
--- - ---- - ---- - -- - ---- + ---- - ---- - ---- - ---- - ---- + |
|||
15 13 11 9 7 14 12 10 8 6 |
|||
a a a a a a a a a a |
|||
5 5 5 5 6 6 6 6 7 7 7 |
|||
5 z z 8 z 2 z 5 z 3 z z z 3 z 4 z z |
|||
---- - --- - ---- - ---- + ---- + ---- - -- + -- + ---- + ---- + -- + |
|||
13 11 9 7 12 10 8 6 11 9 7 |
|||
a a a a a a a a a a a |
|||
8 8 |
|||
z z |
|||
--- + -- |
|||
10 8 |
|||
a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 16]], Vassiliev[3][Knot[9, 16]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{6, 14}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 16]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4 |
|||
q + q + q t + 3 q t + q t + 2 q t + 3 q t + 4 q t + |
|||
15 4 15 5 17 5 17 6 19 6 19 7 |
|||
2 q t + 3 q t + 4 q t + 3 q t + 3 q t + 2 q t + |
|||
21 7 21 8 23 8 25 9 |
|||
3 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 16], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 7 9 10 11 12 13 14 15 |
|||
q - q + 5 q - 4 q - 5 q + 15 q - 7 q - 17 q + 27 q - |
|||
16 17 18 19 20 21 22 23 |
|||
4 q - 32 q + 35 q + 3 q - 42 q + 35 q + 10 q - 42 q + |
|||
24 25 26 27 28 29 30 31 |
|||
28 q + 12 q - 31 q + 16 q + 7 q - 14 q + 6 q + 2 q - |
|||
32 33 |
|||
3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:57, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X12,4,13,3 X16,6,17,5 X18,8,1,7 X6,18,7,17 X10,16,11,15 X14,10,15,9 X8,14,9,13 X2,12,3,11 |
Gauss code | 1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4 |
Dowker-Thistlethwaite code | 4 12 16 18 14 2 8 10 6 |
Conway Notation | [3,3,2+] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 10}, {2, 6}, {1, 3}, {11, 9}, {10, 8}, {9, 7}, {8, 5}, {6, 4}, {5, 2}, {4, 11}, {7, 1}] |
[edit Notes on presentations of 9 16]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 16"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X12,4,13,3 X16,6,17,5 X18,8,1,7 X6,18,7,17 X10,16,11,15 X14,10,15,9 X8,14,9,13 X2,12,3,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 16 18 14 2 8 10 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,3,2+] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 6}, {1, 3}, {11, 9}, {10, 8}, {9, 7}, {8, 5}, {6, 4}, {5, 2}, {4, 11}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 16"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 16"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (6, 14) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 9 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|