9 19: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 19 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,3,-4,2,-8,9,-5,6,-7,5,-9,8/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=19|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,3,-4,2,-8,9,-5,6,-7,5,-9,8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 27: | Line 15: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 73: | Line 40: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-2 q^{11}+5 q^9-8 q^8+q^7+15 q^6-21 q^5+q^4+31 q^3-35 q^2-3 q+45-40 q^{-1} -9 q^{-2} +47 q^{-3} -33 q^{-4} -13 q^{-5} +38 q^{-6} -19 q^{-7} -14 q^{-8} +23 q^{-9} -6 q^{-10} -10 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>q^{24}-2 q^{23}+q^{21}+3 q^{20}-5 q^{19}-q^{18}+6 q^{17}+3 q^{16}-14 q^{15}+22 q^{13}+2 q^{12}-40 q^{11}-q^{10}+58 q^9+8 q^8-82 q^7-19 q^6+106 q^5+32 q^4-123 q^3-49 q^2+135 q+66-139 q^{-1} -79 q^{-2} +135 q^{-3} +89 q^{-4} -124 q^{-5} -95 q^{-6} +106 q^{-7} +100 q^{-8} -88 q^{-9} -97 q^{-10} +61 q^{-11} +97 q^{-12} -41 q^{-13} -83 q^{-14} +14 q^{-15} +75 q^{-16} - q^{-17} -55 q^{-18} -13 q^{-19} +39 q^{-20} +16 q^{-21} -22 q^{-22} -16 q^{-23} +12 q^{-24} +10 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}+5 q^9-8 q^8+q^7+15 q^6-21 q^5+q^4+31 q^3-35 q^2-3 q+45-40 q^{-1} -9 q^{-2} +47 q^{-3} -33 q^{-4} -13 q^{-5} +38 q^{-6} -19 q^{-7} -14 q^{-8} +23 q^{-9} -6 q^{-10} -10 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math>|J3=<math>q^{24}-2 q^{23}+q^{21}+3 q^{20}-5 q^{19}-q^{18}+6 q^{17}+3 q^{16}-14 q^{15}+22 q^{13}+2 q^{12}-40 q^{11}-q^{10}+58 q^9+8 q^8-82 q^7-19 q^6+106 q^5+32 q^4-123 q^3-49 q^2+135 q+66-139 q^{-1} -79 q^{-2} +135 q^{-3} +89 q^{-4} -124 q^{-5} -95 q^{-6} +106 q^{-7} +100 q^{-8} -88 q^{-9} -97 q^{-10} +61 q^{-11} +97 q^{-12} -41 q^{-13} -83 q^{-14} +14 q^{-15} +75 q^{-16} - q^{-17} -55 q^{-18} -13 q^{-19} +39 q^{-20} +16 q^{-21} -22 q^{-22} -16 q^{-23} +12 q^{-24} +10 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{40}-2 q^{39}+q^{37}-q^{36}+6 q^{35}-7 q^{34}+q^{33}+2 q^{32}-8 q^{31}+16 q^{30}-15 q^{29}+10 q^{28}+9 q^{27}-29 q^{26}+19 q^{25}-32 q^{24}+42 q^{23}+43 q^{22}-63 q^{21}-7 q^{20}-88 q^{19}+99 q^{18}+141 q^{17}-76 q^{16}-70 q^{15}-225 q^{14}+142 q^{13}+305 q^{12}-18 q^{11}-125 q^{10}-436 q^9+119 q^8+470 q^7+104 q^6-119 q^5-635 q^4+35 q^3+555 q^2+225 q-49-746 q^{-1} -60 q^{-2} +546 q^{-3} +294 q^{-4} +42 q^{-5} -748 q^{-6} -133 q^{-7} +460 q^{-8} +310 q^{-9} +138 q^{-10} -663 q^{-11} -191 q^{-12} +319 q^{-13} +287 q^{-14} +231 q^{-15} -507 q^{-16} -225 q^{-17} +141 q^{-18} +219 q^{-19} +299 q^{-20} -306 q^{-21} -206 q^{-22} -20 q^{-23} +107 q^{-24} +295 q^{-25} -115 q^{-26} -125 q^{-27} -102 q^{-28} -6 q^{-29} +210 q^{-30} -2 q^{-31} -30 q^{-32} -87 q^{-33} -60 q^{-34} +98 q^{-35} +23 q^{-36} +19 q^{-37} -36 q^{-38} -47 q^{-39} +28 q^{-40} +8 q^{-41} +17 q^{-42} -5 q^{-43} -17 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math>|J5=<math>q^{60}-2 q^{59}+q^{57}-q^{56}+2 q^{55}+4 q^{54}-5 q^{53}-3 q^{52}+2 q^{51}-6 q^{50}+4 q^{49}+14 q^{48}-2 q^{47}-5 q^{46}-4 q^{45}-21 q^{44}-5 q^{43}+28 q^{42}+27 q^{41}+15 q^{40}-14 q^{39}-68 q^{38}-56 q^{37}+25 q^{36}+100 q^{35}+116 q^{34}+16 q^{33}-160 q^{32}-222 q^{31}-71 q^{30}+191 q^{29}+370 q^{28}+217 q^{27}-224 q^{26}-555 q^{25}-412 q^{24}+174 q^{23}+752 q^{22}+718 q^{21}-67 q^{20}-947 q^{19}-1053 q^{18}-143 q^{17}+1080 q^{16}+1431 q^{15}+431 q^{14}-1148 q^{13}-1794 q^{12}-752 q^{11}+1127 q^{10}+2086 q^9+1100 q^8-1034 q^7-2310 q^6-1411 q^5+902 q^4+2429 q^3+1667 q^2-734 q-2472-1857 q^{-1} +564 q^{-2} +2453 q^{-3} +1971 q^{-4} -402 q^{-5} -2367 q^{-6} -2035 q^{-7} +241 q^{-8} +2243 q^{-9} +2053 q^{-10} -87 q^{-11} -2067 q^{-12} -2032 q^{-13} -88 q^{-14} +1859 q^{-15} +1973 q^{-16} +264 q^{-17} -1584 q^{-18} -1891 q^{-19} -449 q^{-20} +1293 q^{-21} +1732 q^{-22} +622 q^{-23} -931 q^{-24} -1558 q^{-25} -761 q^{-26} +604 q^{-27} +1278 q^{-28} +837 q^{-29} -232 q^{-30} -1011 q^{-31} -843 q^{-32} -25 q^{-33} +667 q^{-34} +757 q^{-35} +264 q^{-36} -381 q^{-37} -618 q^{-38} -351 q^{-39} +104 q^{-40} +429 q^{-41} +388 q^{-42} +62 q^{-43} -238 q^{-44} -322 q^{-45} -172 q^{-46} +82 q^{-47} +240 q^{-48} +183 q^{-49} +19 q^{-50} -126 q^{-51} -165 q^{-52} -73 q^{-53} +58 q^{-54} +114 q^{-55} +69 q^{-56} -3 q^{-57} -59 q^{-58} -65 q^{-59} -13 q^{-60} +32 q^{-61} +36 q^{-62} +12 q^{-63} -5 q^{-64} -18 q^{-65} -17 q^{-66} +5 q^{-67} +10 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{84}-2 q^{83}+q^{81}-q^{80}+2 q^{79}+6 q^{77}-9 q^{76}-3 q^{75}+4 q^{74}-7 q^{73}+5 q^{72}+5 q^{71}+24 q^{70}-21 q^{69}-12 q^{68}+5 q^{67}-27 q^{66}+q^{65}+20 q^{64}+74 q^{63}-27 q^{62}-25 q^{61}-7 q^{60}-89 q^{59}-31 q^{58}+49 q^{57}+196 q^{56}+17 q^{55}-23 q^{54}-51 q^{53}-269 q^{52}-168 q^{51}+67 q^{50}+454 q^{49}+246 q^{48}+118 q^{47}-103 q^{46}-697 q^{45}-637 q^{44}-120 q^{43}+844 q^{42}+874 q^{41}+752 q^{40}+116 q^{39}-1384 q^{38}-1763 q^{37}-1019 q^{36}+999 q^{35}+1922 q^{34}+2314 q^{33}+1243 q^{32}-1859 q^{31}-3543 q^{30}-3125 q^{29}+165 q^{28}+2796 q^{27}+4727 q^{26}+3756 q^{25}-1278 q^{24}-5230 q^{23}-6201 q^{22}-2076 q^{21}+2590 q^{20}+7062 q^{19}+7201 q^{18}+693 q^{17}-5842 q^{16}-9126 q^{15}-5123 q^{14}+1061 q^{13}+8292 q^{12}+10321 q^{11}+3355 q^{10}-5164 q^9-10853 q^8-7759 q^7-1079 q^6+8234 q^5+12163 q^4+5616 q^3-3831 q^2-11252 q-9251-2914 q^{-1} +7437 q^{-2} +12695 q^{-3} +6961 q^{-4} -2533 q^{-5} -10799 q^{-6} -9712 q^{-7} -4130 q^{-8} +6408 q^{-9} +12358 q^{-10} +7589 q^{-11} -1401 q^{-12} -9859 q^{-13} -9555 q^{-14} -4989 q^{-15} +5152 q^{-16} +11426 q^{-17} +7868 q^{-18} -143 q^{-19} -8380 q^{-20} -8972 q^{-21} -5790 q^{-22} +3411 q^{-23} +9815 q^{-24} +7871 q^{-25} +1419 q^{-26} -6164 q^{-27} -7790 q^{-28} -6448 q^{-29} +1157 q^{-30} +7355 q^{-31} +7270 q^{-32} +2976 q^{-33} -3310 q^{-34} -5756 q^{-35} -6442 q^{-36} -1100 q^{-37} +4217 q^{-38} +5691 q^{-39} +3790 q^{-40} -491 q^{-41} -3019 q^{-42} -5286 q^{-43} -2470 q^{-44} +1183 q^{-45} +3279 q^{-46} +3298 q^{-47} +1297 q^{-48} -405 q^{-49} -3171 q^{-50} -2394 q^{-51} -712 q^{-52} +933 q^{-53} +1773 q^{-54} +1543 q^{-55} +1079 q^{-56} -1078 q^{-57} -1268 q^{-58} -1073 q^{-59} -366 q^{-60} +262 q^{-61} +767 q^{-62} +1182 q^{-63} +60 q^{-64} -157 q^{-65} -525 q^{-66} -498 q^{-67} -415 q^{-68} +6 q^{-69} +601 q^{-70} +228 q^{-71} +268 q^{-72} -15 q^{-73} -152 q^{-74} -365 q^{-75} -224 q^{-76} +143 q^{-77} +49 q^{-78} +196 q^{-79} +107 q^{-80} +58 q^{-81} -139 q^{-82} -140 q^{-83} +7 q^{-84} -38 q^{-85} +56 q^{-86} +52 q^{-87} +64 q^{-88} -28 q^{-89} -43 q^{-90} - q^{-91} -26 q^{-92} +6 q^{-93} +9 q^{-94} +26 q^{-95} -5 q^{-96} -10 q^{-97} +4 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math>|J7=<math>q^{112}-2 q^{111}+q^{109}-q^{108}+2 q^{107}+2 q^{105}+2 q^{104}-9 q^{103}-q^{102}+3 q^{101}-6 q^{100}+7 q^{99}+3 q^{98}+11 q^{97}+11 q^{96}-28 q^{95}-7 q^{94}+2 q^{93}-19 q^{92}+12 q^{91}+9 q^{90}+38 q^{89}+41 q^{88}-56 q^{87}-29 q^{86}-16 q^{85}-51 q^{84}+25 q^{83}+27 q^{82}+96 q^{81}+115 q^{80}-91 q^{79}-96 q^{78}-111 q^{77}-139 q^{76}+62 q^{75}+122 q^{74}+276 q^{73}+308 q^{72}-112 q^{71}-286 q^{70}-463 q^{69}-495 q^{68}+34 q^{67}+402 q^{66}+869 q^{65}+980 q^{64}+139 q^{63}-599 q^{62}-1430 q^{61}-1736 q^{60}-661 q^{59}+632 q^{58}+2222 q^{57}+2998 q^{56}+1670 q^{55}-351 q^{54}-3062 q^{53}-4786 q^{52}-3517 q^{51}-588 q^{50}+3816 q^{49}+7082 q^{48}+6256 q^{47}+2521 q^{46}-3931 q^{45}-9630 q^{44}-10112 q^{43}-5829 q^{42}+3173 q^{41}+12096 q^{40}+14679 q^{39}+10528 q^{38}-900 q^{37}-13795 q^{36}-19766 q^{35}-16639 q^{34}-2931 q^{33}+14414 q^{32}+24606 q^{31}+23543 q^{30}+8369 q^{29}-13428 q^{28}-28609 q^{27}-30788 q^{26}-15023 q^{25}+10894 q^{24}+31380 q^{23}+37534 q^{22}+22153 q^{21}-6984 q^{20}-32519 q^{19}-43182 q^{18}-29277 q^{17}+2194 q^{16}+32266 q^{15}+47435 q^{14}+35554 q^{13}+2811 q^{12}-30755 q^{11}-50085 q^{10}-40694 q^9-7636 q^8+28531 q^7+51410 q^6+44492 q^5+11758 q^4-26022 q^3-51586 q^2-46997 q-15071+23460 q^{-1} +51043 q^{-2} +48493 q^{-3} +17596 q^{-4} -21149 q^{-5} -50051 q^{-6} -49152 q^{-7} -19460 q^{-8} +18995 q^{-9} +48723 q^{-10} +49321 q^{-11} +20961 q^{-12} -16936 q^{-13} -47183 q^{-14} -49153 q^{-15} -22238 q^{-16} +14779 q^{-17} +45278 q^{-18} +48678 q^{-19} +23585 q^{-20} -12258 q^{-21} -42961 q^{-22} -47959 q^{-23} -25002 q^{-24} +9292 q^{-25} +39963 q^{-26} +46799 q^{-27} +26559 q^{-28} -5721 q^{-29} -36200 q^{-30} -45063 q^{-31} -28062 q^{-32} +1588 q^{-33} +31519 q^{-34} +42587 q^{-35} +29294 q^{-36} +2862 q^{-37} -25974 q^{-38} -39041 q^{-39} -29920 q^{-40} -7486 q^{-41} +19703 q^{-42} +34560 q^{-43} +29637 q^{-44} +11556 q^{-45} -13068 q^{-46} -28889 q^{-47} -28087 q^{-48} -14950 q^{-49} +6456 q^{-50} +22647 q^{-51} +25292 q^{-52} +16844 q^{-53} -625 q^{-54} -15869 q^{-55} -21155 q^{-56} -17348 q^{-57} -4126 q^{-58} +9515 q^{-59} +16312 q^{-60} +16060 q^{-61} +7132 q^{-62} -3882 q^{-63} -11017 q^{-64} -13576 q^{-65} -8487 q^{-66} -263 q^{-67} +6155 q^{-68} +10143 q^{-69} +8141 q^{-70} +2916 q^{-71} -2143 q^{-72} -6607 q^{-73} -6670 q^{-74} -3880 q^{-75} -595 q^{-76} +3349 q^{-77} +4603 q^{-78} +3714 q^{-79} +2037 q^{-80} -1038 q^{-81} -2529 q^{-82} -2688 q^{-83} -2354 q^{-84} -432 q^{-85} +844 q^{-86} +1549 q^{-87} +1994 q^{-88} +958 q^{-89} +142 q^{-90} -484 q^{-91} -1255 q^{-92} -945 q^{-93} -644 q^{-94} -187 q^{-95} +659 q^{-96} +643 q^{-97} +618 q^{-98} +447 q^{-99} -136 q^{-100} -264 q^{-101} -485 q^{-102} -517 q^{-103} -64 q^{-104} +77 q^{-105} +242 q^{-106} +349 q^{-107} +137 q^{-108} +105 q^{-109} -88 q^{-110} -260 q^{-111} -122 q^{-112} -86 q^{-113} +21 q^{-114} +110 q^{-115} +55 q^{-116} +91 q^{-117} +41 q^{-118} -65 q^{-119} -47 q^{-120} -50 q^{-121} -12 q^{-122} +28 q^{-123} -3 q^{-124} +26 q^{-125} +25 q^{-126} -6 q^{-127} -9 q^{-128} -17 q^{-129} -4 q^{-130} +10 q^{-131} -4 q^{-132} +7 q^{-134} -5 q^{-137} +3 q^{-139} - q^{-140} </math>}} |
|||
coloured_jones_4 = <math>q^{40}-2 q^{39}+q^{37}-q^{36}+6 q^{35}-7 q^{34}+q^{33}+2 q^{32}-8 q^{31}+16 q^{30}-15 q^{29}+10 q^{28}+9 q^{27}-29 q^{26}+19 q^{25}-32 q^{24}+42 q^{23}+43 q^{22}-63 q^{21}-7 q^{20}-88 q^{19}+99 q^{18}+141 q^{17}-76 q^{16}-70 q^{15}-225 q^{14}+142 q^{13}+305 q^{12}-18 q^{11}-125 q^{10}-436 q^9+119 q^8+470 q^7+104 q^6-119 q^5-635 q^4+35 q^3+555 q^2+225 q-49-746 q^{-1} -60 q^{-2} +546 q^{-3} +294 q^{-4} +42 q^{-5} -748 q^{-6} -133 q^{-7} +460 q^{-8} +310 q^{-9} +138 q^{-10} -663 q^{-11} -191 q^{-12} +319 q^{-13} +287 q^{-14} +231 q^{-15} -507 q^{-16} -225 q^{-17} +141 q^{-18} +219 q^{-19} +299 q^{-20} -306 q^{-21} -206 q^{-22} -20 q^{-23} +107 q^{-24} +295 q^{-25} -115 q^{-26} -125 q^{-27} -102 q^{-28} -6 q^{-29} +210 q^{-30} -2 q^{-31} -30 q^{-32} -87 q^{-33} -60 q^{-34} +98 q^{-35} +23 q^{-36} +19 q^{-37} -36 q^{-38} -47 q^{-39} +28 q^{-40} +8 q^{-41} +17 q^{-42} -5 q^{-43} -17 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>q^{60}-2 q^{59}+q^{57}-q^{56}+2 q^{55}+4 q^{54}-5 q^{53}-3 q^{52}+2 q^{51}-6 q^{50}+4 q^{49}+14 q^{48}-2 q^{47}-5 q^{46}-4 q^{45}-21 q^{44}-5 q^{43}+28 q^{42}+27 q^{41}+15 q^{40}-14 q^{39}-68 q^{38}-56 q^{37}+25 q^{36}+100 q^{35}+116 q^{34}+16 q^{33}-160 q^{32}-222 q^{31}-71 q^{30}+191 q^{29}+370 q^{28}+217 q^{27}-224 q^{26}-555 q^{25}-412 q^{24}+174 q^{23}+752 q^{22}+718 q^{21}-67 q^{20}-947 q^{19}-1053 q^{18}-143 q^{17}+1080 q^{16}+1431 q^{15}+431 q^{14}-1148 q^{13}-1794 q^{12}-752 q^{11}+1127 q^{10}+2086 q^9+1100 q^8-1034 q^7-2310 q^6-1411 q^5+902 q^4+2429 q^3+1667 q^2-734 q-2472-1857 q^{-1} +564 q^{-2} +2453 q^{-3} +1971 q^{-4} -402 q^{-5} -2367 q^{-6} -2035 q^{-7} +241 q^{-8} +2243 q^{-9} +2053 q^{-10} -87 q^{-11} -2067 q^{-12} -2032 q^{-13} -88 q^{-14} +1859 q^{-15} +1973 q^{-16} +264 q^{-17} -1584 q^{-18} -1891 q^{-19} -449 q^{-20} +1293 q^{-21} +1732 q^{-22} +622 q^{-23} -931 q^{-24} -1558 q^{-25} -761 q^{-26} +604 q^{-27} +1278 q^{-28} +837 q^{-29} -232 q^{-30} -1011 q^{-31} -843 q^{-32} -25 q^{-33} +667 q^{-34} +757 q^{-35} +264 q^{-36} -381 q^{-37} -618 q^{-38} -351 q^{-39} +104 q^{-40} +429 q^{-41} +388 q^{-42} +62 q^{-43} -238 q^{-44} -322 q^{-45} -172 q^{-46} +82 q^{-47} +240 q^{-48} +183 q^{-49} +19 q^{-50} -126 q^{-51} -165 q^{-52} -73 q^{-53} +58 q^{-54} +114 q^{-55} +69 q^{-56} -3 q^{-57} -59 q^{-58} -65 q^{-59} -13 q^{-60} +32 q^{-61} +36 q^{-62} +12 q^{-63} -5 q^{-64} -18 q^{-65} -17 q^{-66} +5 q^{-67} +10 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{84}-2 q^{83}+q^{81}-q^{80}+2 q^{79}+6 q^{77}-9 q^{76}-3 q^{75}+4 q^{74}-7 q^{73}+5 q^{72}+5 q^{71}+24 q^{70}-21 q^{69}-12 q^{68}+5 q^{67}-27 q^{66}+q^{65}+20 q^{64}+74 q^{63}-27 q^{62}-25 q^{61}-7 q^{60}-89 q^{59}-31 q^{58}+49 q^{57}+196 q^{56}+17 q^{55}-23 q^{54}-51 q^{53}-269 q^{52}-168 q^{51}+67 q^{50}+454 q^{49}+246 q^{48}+118 q^{47}-103 q^{46}-697 q^{45}-637 q^{44}-120 q^{43}+844 q^{42}+874 q^{41}+752 q^{40}+116 q^{39}-1384 q^{38}-1763 q^{37}-1019 q^{36}+999 q^{35}+1922 q^{34}+2314 q^{33}+1243 q^{32}-1859 q^{31}-3543 q^{30}-3125 q^{29}+165 q^{28}+2796 q^{27}+4727 q^{26}+3756 q^{25}-1278 q^{24}-5230 q^{23}-6201 q^{22}-2076 q^{21}+2590 q^{20}+7062 q^{19}+7201 q^{18}+693 q^{17}-5842 q^{16}-9126 q^{15}-5123 q^{14}+1061 q^{13}+8292 q^{12}+10321 q^{11}+3355 q^{10}-5164 q^9-10853 q^8-7759 q^7-1079 q^6+8234 q^5+12163 q^4+5616 q^3-3831 q^2-11252 q-9251-2914 q^{-1} +7437 q^{-2} +12695 q^{-3} +6961 q^{-4} -2533 q^{-5} -10799 q^{-6} -9712 q^{-7} -4130 q^{-8} +6408 q^{-9} +12358 q^{-10} +7589 q^{-11} -1401 q^{-12} -9859 q^{-13} -9555 q^{-14} -4989 q^{-15} +5152 q^{-16} +11426 q^{-17} +7868 q^{-18} -143 q^{-19} -8380 q^{-20} -8972 q^{-21} -5790 q^{-22} +3411 q^{-23} +9815 q^{-24} +7871 q^{-25} +1419 q^{-26} -6164 q^{-27} -7790 q^{-28} -6448 q^{-29} +1157 q^{-30} +7355 q^{-31} +7270 q^{-32} +2976 q^{-33} -3310 q^{-34} -5756 q^{-35} -6442 q^{-36} -1100 q^{-37} +4217 q^{-38} +5691 q^{-39} +3790 q^{-40} -491 q^{-41} -3019 q^{-42} -5286 q^{-43} -2470 q^{-44} +1183 q^{-45} +3279 q^{-46} +3298 q^{-47} +1297 q^{-48} -405 q^{-49} -3171 q^{-50} -2394 q^{-51} -712 q^{-52} +933 q^{-53} +1773 q^{-54} +1543 q^{-55} +1079 q^{-56} -1078 q^{-57} -1268 q^{-58} -1073 q^{-59} -366 q^{-60} +262 q^{-61} +767 q^{-62} +1182 q^{-63} +60 q^{-64} -157 q^{-65} -525 q^{-66} -498 q^{-67} -415 q^{-68} +6 q^{-69} +601 q^{-70} +228 q^{-71} +268 q^{-72} -15 q^{-73} -152 q^{-74} -365 q^{-75} -224 q^{-76} +143 q^{-77} +49 q^{-78} +196 q^{-79} +107 q^{-80} +58 q^{-81} -139 q^{-82} -140 q^{-83} +7 q^{-84} -38 q^{-85} +56 q^{-86} +52 q^{-87} +64 q^{-88} -28 q^{-89} -43 q^{-90} - q^{-91} -26 q^{-92} +6 q^{-93} +9 q^{-94} +26 q^{-95} -5 q^{-96} -10 q^{-97} +4 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>q^{112}-2 q^{111}+q^{109}-q^{108}+2 q^{107}+2 q^{105}+2 q^{104}-9 q^{103}-q^{102}+3 q^{101}-6 q^{100}+7 q^{99}+3 q^{98}+11 q^{97}+11 q^{96}-28 q^{95}-7 q^{94}+2 q^{93}-19 q^{92}+12 q^{91}+9 q^{90}+38 q^{89}+41 q^{88}-56 q^{87}-29 q^{86}-16 q^{85}-51 q^{84}+25 q^{83}+27 q^{82}+96 q^{81}+115 q^{80}-91 q^{79}-96 q^{78}-111 q^{77}-139 q^{76}+62 q^{75}+122 q^{74}+276 q^{73}+308 q^{72}-112 q^{71}-286 q^{70}-463 q^{69}-495 q^{68}+34 q^{67}+402 q^{66}+869 q^{65}+980 q^{64}+139 q^{63}-599 q^{62}-1430 q^{61}-1736 q^{60}-661 q^{59}+632 q^{58}+2222 q^{57}+2998 q^{56}+1670 q^{55}-351 q^{54}-3062 q^{53}-4786 q^{52}-3517 q^{51}-588 q^{50}+3816 q^{49}+7082 q^{48}+6256 q^{47}+2521 q^{46}-3931 q^{45}-9630 q^{44}-10112 q^{43}-5829 q^{42}+3173 q^{41}+12096 q^{40}+14679 q^{39}+10528 q^{38}-900 q^{37}-13795 q^{36}-19766 q^{35}-16639 q^{34}-2931 q^{33}+14414 q^{32}+24606 q^{31}+23543 q^{30}+8369 q^{29}-13428 q^{28}-28609 q^{27}-30788 q^{26}-15023 q^{25}+10894 q^{24}+31380 q^{23}+37534 q^{22}+22153 q^{21}-6984 q^{20}-32519 q^{19}-43182 q^{18}-29277 q^{17}+2194 q^{16}+32266 q^{15}+47435 q^{14}+35554 q^{13}+2811 q^{12}-30755 q^{11}-50085 q^{10}-40694 q^9-7636 q^8+28531 q^7+51410 q^6+44492 q^5+11758 q^4-26022 q^3-51586 q^2-46997 q-15071+23460 q^{-1} +51043 q^{-2} +48493 q^{-3} +17596 q^{-4} -21149 q^{-5} -50051 q^{-6} -49152 q^{-7} -19460 q^{-8} +18995 q^{-9} +48723 q^{-10} +49321 q^{-11} +20961 q^{-12} -16936 q^{-13} -47183 q^{-14} -49153 q^{-15} -22238 q^{-16} +14779 q^{-17} +45278 q^{-18} +48678 q^{-19} +23585 q^{-20} -12258 q^{-21} -42961 q^{-22} -47959 q^{-23} -25002 q^{-24} +9292 q^{-25} +39963 q^{-26} +46799 q^{-27} +26559 q^{-28} -5721 q^{-29} -36200 q^{-30} -45063 q^{-31} -28062 q^{-32} +1588 q^{-33} +31519 q^{-34} +42587 q^{-35} +29294 q^{-36} +2862 q^{-37} -25974 q^{-38} -39041 q^{-39} -29920 q^{-40} -7486 q^{-41} +19703 q^{-42} +34560 q^{-43} +29637 q^{-44} +11556 q^{-45} -13068 q^{-46} -28889 q^{-47} -28087 q^{-48} -14950 q^{-49} +6456 q^{-50} +22647 q^{-51} +25292 q^{-52} +16844 q^{-53} -625 q^{-54} -15869 q^{-55} -21155 q^{-56} -17348 q^{-57} -4126 q^{-58} +9515 q^{-59} +16312 q^{-60} +16060 q^{-61} +7132 q^{-62} -3882 q^{-63} -11017 q^{-64} -13576 q^{-65} -8487 q^{-66} -263 q^{-67} +6155 q^{-68} +10143 q^{-69} +8141 q^{-70} +2916 q^{-71} -2143 q^{-72} -6607 q^{-73} -6670 q^{-74} -3880 q^{-75} -595 q^{-76} +3349 q^{-77} +4603 q^{-78} +3714 q^{-79} +2037 q^{-80} -1038 q^{-81} -2529 q^{-82} -2688 q^{-83} -2354 q^{-84} -432 q^{-85} +844 q^{-86} +1549 q^{-87} +1994 q^{-88} +958 q^{-89} +142 q^{-90} -484 q^{-91} -1255 q^{-92} -945 q^{-93} -644 q^{-94} -187 q^{-95} +659 q^{-96} +643 q^{-97} +618 q^{-98} +447 q^{-99} -136 q^{-100} -264 q^{-101} -485 q^{-102} -517 q^{-103} -64 q^{-104} +77 q^{-105} +242 q^{-106} +349 q^{-107} +137 q^{-108} +105 q^{-109} -88 q^{-110} -260 q^{-111} -122 q^{-112} -86 q^{-113} +21 q^{-114} +110 q^{-115} +55 q^{-116} +91 q^{-117} +41 q^{-118} -65 q^{-119} -47 q^{-120} -50 q^{-121} -12 q^{-122} +28 q^{-123} -3 q^{-124} +26 q^{-125} +25 q^{-126} -6 q^{-127} -9 q^{-128} -17 q^{-129} -4 q^{-130} +10 q^{-131} -4 q^{-132} +7 q^{-134} -5 q^{-137} +3 q^{-139} - q^{-140} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 19]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[13, 16, 14, 17], X[7, 15, 8, 14], X[15, 7, 16, 6], |
X[13, 16, 14, 17], X[7, 15, 8, 14], X[15, 7, 16, 6], |
||
X[11, 18, 12, 1], X[17, 12, 18, 13]]</nowiki></ |
X[11, 18, 12, 1], X[17, 12, 18, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 19]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 19]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 19]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, 1, -2, -2, -3, 2, 4, -3, 4}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, 18, 16, 6, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 19]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_19_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 19]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, -2, 1, -2, -2, -3, 2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 19]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 10 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 19]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_19_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 19]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 19]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 10 2 |
|||
17 + -- - -- - 10 t + 2 t |
17 + -- - -- - 10 t + 2 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 19]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 19]][z]</nowiki></code></td></tr> |
|||
1 - 2 z + 2 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - 2 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 19]], KnotSignature[Knot[9, 19]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{41, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 4 6 7 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 19]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 19]], KnotSignature[Knot[9, 19]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{41, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 19]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 4 6 7 2 3 4 |
|||
7 - q + -- - -- + -- - - - 6 q + 4 q - 2 q + q |
7 - q + -- - -- + -- - - - 6 q + 4 q - 2 q + q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 19]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 19]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 19]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 -12 -10 2 -2 2 4 8 10 |
|||
-1 - q + q + q - q + -- + q + q - 2 q + q - q + |
-1 - q + q + q - q + -- + q + q - 2 q + q - q + |
||
8 |
8 |
||
Line 145: | Line 178: | ||
12 14 |
12 14 |
||
q + q</nowiki></ |
q + q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 19]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 19]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-4 -2 2 2 z 2 2 4 2 4 2 4 |
-4 -2 2 2 z 2 2 4 2 4 2 4 |
||
a - a + a - ---- + a z - a z + z + a z |
a - a + a - ---- + a z - a z + z + a z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 19]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 19]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-4 -2 2 z z 3 2 2 z 3 z 2 2 |
-4 -2 2 z z 3 2 2 z 3 z 2 2 |
||
a + a - a + -- - - - 3 a z - a z + 3 z - ---- - ---- + 8 a z + |
a + a - a + -- - - - 3 a z - a z + 3 z - ---- - ---- + 8 a z + |
||
Line 177: | Line 218: | ||
---- + 3 a z + 3 a z + ---- + 5 a z + 3 a z + z + a z |
---- + 3 a z + 3 a z + ---- + 5 a z + 3 a z + z + a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 19]], Vassiliev[3][Knot[9, 19]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 19]], Vassiliev[3][Knot[9, 19]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 19]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 19]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 1 2 1 2 2 4 2 |
|||
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 191: | Line 240: | ||
---- + --- + 3 q t + 3 q t + q t + 3 q t + q t + q t + q t |
---- + --- + 3 q t + 3 q t + q t + 3 q t + q t + q t + q t |
||
3 q t |
3 q t |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 19], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 19], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 9 10 6 23 14 19 38 13 33 47 |
|||
45 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
45 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
||
14 12 11 10 9 8 7 6 5 4 3 |
14 12 11 10 9 8 7 6 5 4 3 |
||
Line 205: | Line 258: | ||
9 11 12 |
9 11 12 |
||
5 q - 2 q + q</nowiki></ |
5 q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 19's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X13,16,14,17 X7,15,8,14 X15,7,16,6 X11,18,12,1 X17,12,18,13 |
Gauss code | -1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8 |
Dowker-Thistlethwaite code | 4 8 10 14 2 18 16 6 12 |
Conway Notation | [23112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{11, 5}, {4, 9}, {10, 6}, {5, 7}, {9, 11}, {6, 3}, {2, 4}, {3, 1}, {8, 2}, {7, 10}, {1, 8}] |
[edit Notes on presentations of 9 19]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 19"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X13,16,14,17 X7,15,8,14 X15,7,16,6 X11,18,12,1 X17,12,18,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 14 2 18 16 6 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[23112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 5}, {4, 9}, {10, 6}, {5, 7}, {9, 11}, {6, 3}, {2, 4}, {3, 1}, {8, 2}, {7, 10}, {1, 8}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 19"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 41, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 19"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 19. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|