9 24: Difference between revisions
No edit summary  | 
				No edit summary  | 
				||
| (4 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!  | 
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->  | 
|||
<!--  -->  | 
  <!--  -->  | 
||
<!-- -->  | 
  |||
<!--  -->  | 
  <!--  -->  | 
||
{{Rolfsen Knot Page|  | 
|||
<!-- -->  | 
  |||
n = 9 |  | 
|||
<!-- provide an anchor so we can return to the top of the page -->  | 
  |||
k = 24 |  | 
|||
<span id="top"></span>  | 
  |||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,6,-5,7,-8,3,-7,4,-6,5/goTop.html |  | 
|||
<!-- -->  | 
  |||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
|||
<!-- this relies on transclusion for next and previous links -->  | 
  |||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
{{Knot Navigation Links|ext=gif}}  | 
  |||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
{{Rolfsen Knot Page Header|n=9|k=24|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,6,-5,7,-8,3,-7,4,-6,5/goTop.html}}  | 
  |||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
</table> |  | 
|||
<br style="clear:both" />  | 
  |||
braid_crossings = 9 |  | 
|||
braid_width     = 4 |  | 
|||
{{:{{PAGENAME}} Further Notes and Views}}  | 
  |||
braid_index     = 4 |  | 
|||
same_alexander  = [[8_18]], [[K11n85]], [[K11n164]],  |  | 
|||
{{Knot Presentations}}  | 
  |||
same_jones      =  |  | 
|||
{{3D Invariants}}  | 
  |||
khovanov_table  = <table border=1>  | 
|||
{{4D Invariants}}  | 
  |||
{{Polynomial Invariants}}  | 
  |||
{{Vassiliev Invariants}}  | 
  |||
{{Khovanov Homology|table=<table border=1>  | 
  |||
<tr align=center>  | 
  <tr align=center>  | 
||
<td width=14.2857%><table cellpadding=0 cellspacing=0>  | 
  <td width=14.2857%><table cellpadding=0 cellspacing=0>  | 
||
  <tr><td>\</td><td> </td><td>r</td></tr>  | 
|||
<tr><td> </td><td> \ </td><td> </td></tr>  | 
  <tr><td> </td><td> \ </td><td> </td></tr>  | 
||
<tr><td>j</td><td> </td><td>\</td></tr>  | 
  <tr><td>j</td><td> </td><td>\</td></tr>  | 
||
</table></td>  | 
  </table></td>  | 
||
  <td width=7.14286%>-5</td    ><td width=7.14286%>-4</td    ><td width=7.14286%>-3</td    ><td width=7.14286%>-2</td    ><td width=7.14286%>-1</td    ><td width=7.14286%>0</td    ><td width=7.14286%>1</td    ><td width=7.14286%>2</td    ><td width=7.14286%>3</td    ><td width=7.14286%>4</td    ><td width=14.2857%>χ</td></tr>  | 
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr>  | 
  <tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr>  | 
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr>  | 
  <tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr>  | 
||
| Line 40: | Line 39: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  <tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr>  | 
  <tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr>  | 
||
</table>  | 
  </table> |  | 
||
coloured_jones_2 = <math>q^{12}-3 q^{11}+q^{10}+8 q^9-14 q^8+q^7+26 q^6-31 q^5-6 q^4+49 q^3-43 q^2-16 q+64-43 q^{-1} -23 q^{-2} +61 q^{-3} -31 q^{-4} -25 q^{-5} +44 q^{-6} -14 q^{-7} -19 q^{-8} +21 q^{-9} -3 q^{-10} -9 q^{-11} +6 q^{-12} -2 q^{-14} + q^{-15} </math> |  | 
|||
{{Computer Talk Header}}  | 
  |||
coloured_jones_3 = <math>q^{24}-3 q^{23}+q^{22}+4 q^{21}+q^{20}-11 q^{19}-2 q^{18}+23 q^{17}+4 q^{16}-39 q^{15}-14 q^{14}+62 q^{13}+32 q^{12}-87 q^{11}-60 q^{10}+112 q^9+92 q^8-128 q^7-132 q^6+141 q^5+168 q^4-145 q^3-196 q^2+137 q+221-130 q^{-1} -225 q^{-2} +104 q^{-3} +235 q^{-4} -89 q^{-5} -216 q^{-6} +52 q^{-7} +207 q^{-8} -31 q^{-9} -173 q^{-10} -4 q^{-11} +149 q^{-12} +17 q^{-13} -108 q^{-14} -32 q^{-15} +75 q^{-16} +35 q^{-17} -48 q^{-18} -28 q^{-19} +24 q^{-20} +22 q^{-21} -13 q^{-22} -12 q^{-23} +4 q^{-24} +8 q^{-25} -3 q^{-26} -2 q^{-27} +2 q^{-29} - q^{-30} </math> |  | 
|||
coloured_jones_4 = <math>q^{40}-3 q^{39}+q^{38}+4 q^{37}-3 q^{36}+4 q^{35}-14 q^{34}+6 q^{33}+19 q^{32}-12 q^{31}+7 q^{30}-51 q^{29}+19 q^{28}+73 q^{27}-12 q^{26}-q^{25}-159 q^{24}+13 q^{23}+191 q^{22}+64 q^{21}+20 q^{20}-380 q^{19}-97 q^{18}+328 q^{17}+264 q^{16}+154 q^{15}-652 q^{14}-345 q^{13}+376 q^{12}+523 q^{11}+425 q^{10}-855 q^9-649 q^8+299 q^7+719 q^6+731 q^5-920 q^4-875 q^3+148 q^2+786 q+961-858 q^{-1} -967 q^{-2} -17 q^{-3} +732 q^{-4} +1069 q^{-5} -696 q^{-6} -928 q^{-7} -182 q^{-8} +574 q^{-9} +1068 q^{-10} -451 q^{-11} -773 q^{-12} -329 q^{-13} +330 q^{-14} +948 q^{-15} -166 q^{-16} -519 q^{-17} -403 q^{-18} +62 q^{-19} +706 q^{-20} +50 q^{-21} -232 q^{-22} -342 q^{-23} -120 q^{-24} +400 q^{-25} +117 q^{-26} -21 q^{-27} -194 q^{-28} -154 q^{-29} +160 q^{-30} +71 q^{-31} +50 q^{-32} -66 q^{-33} -94 q^{-34} +45 q^{-35} +17 q^{-36} +36 q^{-37} -11 q^{-38} -36 q^{-39} +12 q^{-40} - q^{-41} +12 q^{-42} -10 q^{-44} +4 q^{-45} - q^{-46} +2 q^{-47} -2 q^{-49} + q^{-50} </math> |  | 
|||
<table>  | 
  |||
coloured_jones_5 = <math>q^{60}-3 q^{59}+q^{58}+4 q^{57}-3 q^{56}+q^{54}-6 q^{53}+2 q^{52}+14 q^{51}-5 q^{50}-14 q^{49}-6 q^{48}-2 q^{47}+24 q^{46}+39 q^{45}-q^{44}-66 q^{43}-79 q^{42}-7 q^{41}+107 q^{40}+172 q^{39}+69 q^{38}-168 q^{37}-333 q^{36}-196 q^{35}+208 q^{34}+538 q^{33}+449 q^{32}-158 q^{31}-809 q^{30}-831 q^{29}-7 q^{28}+1053 q^{27}+1340 q^{26}+354 q^{25}-1232 q^{24}-1931 q^{23}-870 q^{22}+1265 q^{21}+2551 q^{20}+1527 q^{19}-1151 q^{18}-3086 q^{17}-2271 q^{16}+863 q^{15}+3522 q^{14}+3018 q^{13}-483 q^{12}-3792 q^{11}-3678 q^{10}+18 q^9+3915 q^8+4223 q^7+454 q^6-3921 q^5-4619 q^4-860 q^3+3781 q^2+4865 q+1275-3622 q^{-1} -4996 q^{-2} -1545 q^{-3} +3323 q^{-4} +4988 q^{-5} +1886 q^{-6} -3041 q^{-7} -4920 q^{-8} -2065 q^{-9} +2595 q^{-10} +4709 q^{-11} +2366 q^{-12} -2168 q^{-13} -4438 q^{-14} -2494 q^{-15} +1565 q^{-16} +4008 q^{-17} +2714 q^{-18} -1010 q^{-19} -3503 q^{-20} -2696 q^{-21} +332 q^{-22} +2853 q^{-23} +2698 q^{-24} +194 q^{-25} -2169 q^{-26} -2427 q^{-27} -683 q^{-28} +1424 q^{-29} +2125 q^{-30} +960 q^{-31} -795 q^{-32} -1639 q^{-33} -1071 q^{-34} +249 q^{-35} +1159 q^{-36} +1018 q^{-37} +102 q^{-38} -714 q^{-39} -823 q^{-40} -290 q^{-41} +342 q^{-42} +601 q^{-43} +342 q^{-44} -123 q^{-45} -368 q^{-46} -287 q^{-47} -24 q^{-48} +208 q^{-49} +209 q^{-50} +54 q^{-51} -85 q^{-52} -126 q^{-53} -69 q^{-54} +39 q^{-55} +70 q^{-56} +34 q^{-57} + q^{-58} -31 q^{-59} -33 q^{-60} +4 q^{-61} +18 q^{-62} +4 q^{-63} +5 q^{-64} -2 q^{-65} -11 q^{-66} + q^{-67} +6 q^{-68} -2 q^{-69} + q^{-71} -2 q^{-72} +2 q^{-74} - q^{-75} </math> |  | 
|||
<tr valign=top>  | 
  |||
coloured_jones_6 = <math>q^{84}-3 q^{83}+q^{82}+4 q^{81}-3 q^{80}-3 q^{78}+9 q^{77}-10 q^{76}-3 q^{75}+21 q^{74}-15 q^{73}-8 q^{72}-11 q^{71}+36 q^{70}-9 q^{69}-2 q^{68}+54 q^{67}-59 q^{66}-65 q^{65}-60 q^{64}+110 q^{63}+45 q^{62}+83 q^{61}+181 q^{60}-163 q^{59}-293 q^{58}-343 q^{57}+118 q^{56}+196 q^{55}+480 q^{54}+747 q^{53}-88 q^{52}-761 q^{51}-1276 q^{50}-510 q^{49}+26 q^{48}+1292 q^{47}+2386 q^{46}+1063 q^{45}-834 q^{44}-2971 q^{43}-2645 q^{42}-1728 q^{41}+1621 q^{40}+5148 q^{39}+4384 q^{38}+1092 q^{37}-4217 q^{36}-6238 q^{35}-6260 q^{34}-381 q^{33}+7486 q^{32}+9593 q^{31}+6158 q^{30}-2964 q^{29}-9446 q^{28}-12930 q^{27}-5661 q^{26}+7256 q^{25}+14508 q^{24}+13314 q^{23}+1504 q^{22}-10137 q^{21}-19221 q^{20}-12791 q^{19}+3969 q^{18}+16960 q^{17}+19867 q^{16}+7571 q^{15}-8007 q^{14}-22977 q^{13}-19097 q^{12}-756 q^{11}+16666 q^{10}+23858 q^9+12843 q^8-4544 q^7-23940 q^6-22954 q^5-4949 q^4+14828 q^3+25188 q^2+16161 q-1272-23090 q^{-1} -24468 q^{-2} -7896 q^{-3} +12518 q^{-4} +24741 q^{-5} +17851 q^{-6} +1461 q^{-7} -21188 q^{-8} -24457 q^{-9} -10067 q^{-10} +9789 q^{-11} +23057 q^{-12} +18658 q^{-13} +4229 q^{-14} -18113 q^{-15} -23290 q^{-16} -12085 q^{-17} +6069 q^{-18} +19884 q^{-19} +18710 q^{-20} +7474 q^{-21} -13340 q^{-22} -20537 q^{-23} -13752 q^{-24} +1184 q^{-25} +14726 q^{-26} +17254 q^{-27} +10578 q^{-28} -6988 q^{-29} -15602 q^{-30} -13882 q^{-31} -3759 q^{-32} +7912 q^{-33} +13444 q^{-34} +11899 q^{-35} -611 q^{-36} -8900 q^{-37} -11356 q^{-38} -6693 q^{-39} +1289 q^{-40} +7705 q^{-41} +10190 q^{-42} +3436 q^{-43} -2472 q^{-44} -6675 q^{-45} -6341 q^{-46} -2739 q^{-47} +2197 q^{-48} +6189 q^{-49} +4001 q^{-50} +1342 q^{-51} -2113 q^{-52} -3676 q^{-53} -3349 q^{-54} -896 q^{-55} +2304 q^{-56} +2309 q^{-57} +2036 q^{-58} +348 q^{-59} -1054 q^{-60} -1998 q^{-61} -1390 q^{-62} +255 q^{-63} +595 q^{-64} +1151 q^{-65} +750 q^{-66} +157 q^{-67} -683 q^{-68} -757 q^{-69} -188 q^{-70} -111 q^{-71} +337 q^{-72} +378 q^{-73} +295 q^{-74} -124 q^{-75} -238 q^{-76} -78 q^{-77} -154 q^{-78} +34 q^{-79} +98 q^{-80} +145 q^{-81} -10 q^{-82} -54 q^{-83} +5 q^{-84} -62 q^{-85} -11 q^{-86} +11 q^{-87} +48 q^{-88} -4 q^{-89} -15 q^{-90} +14 q^{-91} -15 q^{-92} -4 q^{-93} -2 q^{-94} +13 q^{-95} -2 q^{-96} -7 q^{-97} +6 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math> |  | 
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td>  | 
  |||
coloured_jones_7 = <math>q^{112}-3 q^{111}+q^{110}+4 q^{109}-3 q^{108}-3 q^{106}+5 q^{105}+5 q^{104}-15 q^{103}+4 q^{102}+11 q^{101}-9 q^{100}-2 q^{99}-12 q^{98}+19 q^{97}+37 q^{96}-32 q^{95}-2 q^{94}-48 q^{92}-14 q^{91}-40 q^{90}+72 q^{89}+168 q^{88}+24 q^{87}+16 q^{86}-91 q^{85}-259 q^{84}-181 q^{83}-188 q^{82}+155 q^{81}+590 q^{80}+477 q^{79}+407 q^{78}-137 q^{77}-875 q^{76}-1031 q^{75}-1120 q^{74}-203 q^{73}+1281 q^{72}+1989 q^{71}+2345 q^{70}+1079 q^{69}-1362 q^{68}-3110 q^{67}-4428 q^{66}-3118 q^{65}+618 q^{64}+4273 q^{63}+7457 q^{62}+6604 q^{61}+1553 q^{60}-4636 q^{59}-10927 q^{58}-11983 q^{57}-6169 q^{56}+3303 q^{55}+14408 q^{54}+19031 q^{53}+13506 q^{52}+831 q^{51}-16442 q^{50}-26995 q^{49}-23947 q^{48}-8676 q^{47}+15902 q^{46}+34749 q^{45}+36681 q^{44}+20480 q^{43}-11524 q^{42}-40702 q^{41}-50508 q^{40}-35873 q^{39}+2765 q^{38}+43450 q^{37}+63855 q^{36}+53648 q^{35}+10102 q^{34}-42189 q^{33}-75024 q^{32}-71983 q^{31}-26135 q^{30}+36687 q^{29}+82781 q^{28}+89294 q^{27}+43774 q^{26}-27768 q^{25}-86691 q^{24}-103909 q^{23}-61115 q^{22}+16431 q^{21}+86756 q^{20}+115077 q^{19}+76927 q^{18}-4269 q^{17}-83961 q^{16}-122499 q^{15}-89954 q^{14}-7438 q^{13}+79102 q^{12}+126507 q^{11}+99926 q^{10}+17883 q^9-73296 q^8-127958 q^7-106970 q^6-26389 q^5+67443 q^4+127324 q^3+111375 q^2+33314 q-61653-125691 q^{-1} -114184 q^{-2} -38579 q^{-3} +56492 q^{-4} +123025 q^{-5} +115435 q^{-6} +43195 q^{-7} -51048 q^{-8} -119959 q^{-9} -116286 q^{-10} -47264 q^{-11} +45652 q^{-12} +115863 q^{-13} +116152 q^{-14} +51725 q^{-15} -38925 q^{-16} -110840 q^{-17} -115841 q^{-18} -56394 q^{-19} +31289 q^{-20} +103934 q^{-21} +114155 q^{-22} +61680 q^{-23} -21528 q^{-24} -95151 q^{-25} -111441 q^{-26} -66761 q^{-27} +10615 q^{-28} +83603 q^{-29} +106145 q^{-30} +71494 q^{-31} +1936 q^{-32} -69811 q^{-33} -98629 q^{-34} -74307 q^{-35} -14326 q^{-36} +53509 q^{-37} +87585 q^{-38} +74888 q^{-39} +26325 q^{-40} -36303 q^{-41} -74054 q^{-42} -71793 q^{-43} -35554 q^{-44} +18850 q^{-45} +57750 q^{-46} +65265 q^{-47} +41743 q^{-48} -3220 q^{-49} -40863 q^{-50} -55196 q^{-51} -43277 q^{-52} -9314 q^{-53} +24128 q^{-54} +42753 q^{-55} +40895 q^{-56} +17656 q^{-57} -9884 q^{-58} -29576 q^{-59} -34702 q^{-60} -21292 q^{-61} -1049 q^{-62} +17056 q^{-63} +26466 q^{-64} +21009 q^{-65} +7799 q^{-66} -6956 q^{-67} -17714 q^{-68} -17580 q^{-69} -10597 q^{-70} -194 q^{-71} +9806 q^{-72} +12797 q^{-73} +10460 q^{-74} +4065 q^{-75} -3942 q^{-76} -7862 q^{-77} -8324 q^{-78} -5364 q^{-79} +153 q^{-80} +3845 q^{-81} +5689 q^{-82} +4915 q^{-83} +1542 q^{-84} -1117 q^{-85} -3181 q^{-86} -3682 q^{-87} -1983 q^{-88} -293 q^{-89} +1431 q^{-90} +2297 q^{-91} +1615 q^{-92} +851 q^{-93} -342 q^{-94} -1288 q^{-95} -1099 q^{-96} -782 q^{-97} -83 q^{-98} +543 q^{-99} +559 q^{-100} +625 q^{-101} +267 q^{-102} -237 q^{-103} -296 q^{-104} -346 q^{-105} -172 q^{-106} +44 q^{-107} +50 q^{-108} +208 q^{-109} +172 q^{-110} -16 q^{-111} -40 q^{-112} -97 q^{-113} -48 q^{-114} +3 q^{-115} -38 q^{-116} +38 q^{-117} +60 q^{-118} +4 q^{-119} - q^{-120} -27 q^{-121} -5 q^{-122} +13 q^{-123} -21 q^{-124} + q^{-125} +14 q^{-126} +2 q^{-127} +2 q^{-128} -9 q^{-129} +8 q^{-131} -5 q^{-132} -2 q^{-133} +2 q^{-134} + q^{-136} -2 q^{-137} +2 q^{-139} - q^{-140} </math> |  | 
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
  |||
computer_talk =   | 
|||
</tr>  | 
  |||
         <table>  | 
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>  | 
  |||
         <tr valign=top>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 24]]</nowiki></pre></td></tr>  | 
  |||
         <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td>  | 
|||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
|||
         </tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16],   | 
  |||
         <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>  | 
|||
         </table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 24]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16],   | 
|||
  X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12],   | 
    X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12],   | 
||
  X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></  | 
    X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 24]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 24]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 24]][t]</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 24]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 2, 16, 18, 6, 12, 10]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 24]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 24]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 24]]]</nowiki></code></td></tr>  | 
|||
<tr align=left><td></td><td>[[Image:9_24_ML.gif]]</td></tr><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 24]]&) /@ {  | 
|||
                  SymmetryType, UnknottingNumber, ThreeGenus,  | 
|||
                  BridgeIndex, SuperBridgeIndex, NakanishiIndex  | 
|||
                 }</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, {4, 6}, 1}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 24]][t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -3   5    10             2    3  | 
|||
13 - t   + -- - -- - 10 t + 5 t  - t  | 
  13 - t   + -- - -- - 10 t + 5 t  - t  | 
||
            2   t  | 
              2   t  | 
||
           t</nowiki></  | 
             t</nowiki></code></td></tr>  | 
||
</table>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 24]][z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     2    4    6  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
|||
1 + z  - z  - z</nowiki></pre></td></tr>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 24]][z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85],   | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     2    4    6  | 
|||
1 + z  - z  - z</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85],   | 
|||
  Knot[11, NonAlternating, 164]}</nowiki></  | 
    Knot[11, NonAlternating, 164]}</nowiki></code></td></tr>  | 
||
</table>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]}</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{45, 0}</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>  | 
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{45, 0}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 24]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -5   2    4    7    7            2      3    4  | 
|||
8 - q   + -- - -- + -- - - - 7 q + 5 q  - 3 q  + q  | 
  8 - q   + -- - -- + -- - - - 7 q + 5 q  - 3 q  + q  | 
||
           4    3    2   q  | 
             4    3    2   q  | 
||
          q    q    q</nowiki></  | 
            q    q    q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 24]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>  | 
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -16    -14    -10   3    2     -4   2     2      4    8    10  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 24]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 24]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -16    -14    -10   3    2     -4   2     2      4    8    10  | 
|||
-2 - q    - q    - q    + -- + -- + q   + -- + q  - 2 q  + q  - q   +   | 
  -2 - q    - q    - q    + -- + -- + q   + -- + q  - 2 q  + q  - q   +   | 
||
                           8    6          2  | 
                             8    6          2  | 
||
| Line 90: | Line 179: | ||
   12  | 
     12  | 
||
  q</nowiki></  | 
    q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 24]][a, z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -2      2      4   z    2 z              3        5        2  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 24]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                   2                             4  | 
|||
      -2      2      4      2   2 z       2  2    4  2      4   z  | 
|||
-3 + a   + 5 a  - 2 a  - 6 z  + ---- + 6 a  z  - a  z  - 4 z  + -- +   | 
|||
                                  2                              2  | 
|||
                                 a                              a  | 
|||
     2  4    6  | 
|||
  2 a  z  - z</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 24]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -2      2      4   z    2 z              3        5        2  | 
|||
-3 - a   - 5 a  - 2 a  + -- + --- + 2 a z + 3 a  z + 2 a  z + 9 z  -   | 
  -3 - a   - 5 a  - 2 a  + -- + --- + 2 a z + 3 a  z + 2 a  z + 9 z  -   | 
||
                          3    a  | 
                            3    a  | 
||
| Line 116: | Line 224: | ||
       7      3  7    8    2  8  | 
         7      3  7    8    2  8  | 
||
  5 a z  + 2 a  z  + z  + a  z</nowiki></  | 
    5 a z  + 2 a  z  + z  + a  z</nowiki></code></td></tr>  | 
||
</table>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]}</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>  | 
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -2}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 24]][q, t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5           1        1       1       3       1       4       3  | 
|||
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +   | 
  - + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +   | 
||
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2  | 
  q          11  5    9  4    7  4    7  3    5  3    5  2    3  2  | 
||
| Line 131: | Line 249: | ||
   9  4  | 
     9  4  | 
||
  q  t</nowiki></  | 
    q  t</nowiki></code></td></tr>  | 
||
</table>  | 
  </table>  | 
||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>  | 
|||
 [[Category:Knot Page]]  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 24], 2][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -15    2     6     9     3    21   19   14   44   25   31   61  | 
|||
64 + q    - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- -   | 
|||
             14    12    11    10    9    8    7    6    5    4    3  | 
|||
            q     q     q     q     q    q    q    q    q    q    q  | 
|||
  23   43              2       3      4       5       6    7       8  | 
|||
  -- - -- - 16 q - 43 q  + 49 q  - 6 q  - 31 q  + 26 q  + q  - 14 q  +   | 
|||
   2   q  | 
|||
  q  | 
|||
     9    10      11    12  | 
|||
  8 q  + q   - 3 q   + q</nowiki></code></td></tr>  | 
|||
</table>  }}  | 
|||
Latest revision as of 16:56, 1 September 2005
| 
 | 
 | 
![]() (KnotPlot image)  | 
 See the full Rolfsen Knot Table. Visit 9 24's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)  | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283 | 
| Gauss code | -1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5 | 
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 6 12 10 | 
| Conway Notation | [3,21,2+] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4  | 
 
 | 
![]() [{12, 4}, {3, 10}, {8, 11}, {10, 12}, {9, 5}, {4, 8}, {6, 9}, {5, 7}, {2, 6}, {1, 3}, {11, 2}, {7, 1}]  | 
[edit Notes on presentations of 9 24]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["9 24"];
 | 
In[4]:=
 | 
PD[K]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283 | 
In[5]:=
 | 
GaussCode[K]
 | 
Out[5]=
 | 
-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5 | 
In[6]:=
 | 
DTCode[K]
 | 
Out[6]=
 | 
4 8 14 2 16 18 6 12 10 | 
(The path below may be different on your system)
In[7]:=
 | 
AppendTo[$Path, "C:/bin/LinKnot/"];
 | 
In[8]:=
 | 
ConwayNotation[K]
 | 
Out[8]=
 | 
[3,21,2+] | 
In[9]:=
 | 
br = BR[K]
 | 
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
 | 
Out[9]=
 | 
In[10]:=
 | 
{First[br], Crossings[br], BraidIndex[K]}
 | 
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
 | 
KnotTheory::loading: Loading precomputed data in IndianaData`.
 | 
Out[10]=
 | 
{ 4, 9, 4 } | 
In[11]:=
 | 
Show[BraidPlot[br]]
 | 
Out[11]=
 | 
-Graphics- | 
In[12]:=
 | 
Show[DrawMorseLink[K]]
 | 
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
 | 
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
 | 
 
 | 
Out[12]=
 | 
-Graphics- | 
In[13]:=
 | 
ap = ArcPresentation[K]
 | 
Out[13]=
 | 
ArcPresentation[{12, 4}, {3, 10}, {8, 11}, {10, 12}, {9, 5}, {4, 8}, {6, 9}, {5, 7}, {2, 6}, {1, 3}, {11, 2}, {7, 1}] | 
In[14]:=
 | 
Draw[ap]
 | 
 
 | 
Out[14]=
 | 
-Graphics- | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["9 24"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 45, 0 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_18, K11n85, K11n164,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["9 24"];
 | 
In[4]:=
 | 
{A = Alexander[K][t], J = Jones[K][q]}
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[4]=
 | 
{ , } | 
In[5]:=
 | 
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
 | 
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
 | 
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
 | 
Out[5]=
 | 
{8_18, K11n85, K11n164,} | 
In[6]:=
 | 
DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
 | 
Out[6]=
 | 
{} | 
Vassiliev invariants
| V2 and V3: | (1, -2) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 24. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top.  | 
  | 




