9 47: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=9_47}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 9 |
k = 47 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,6,-1,2,-3,5,-6,-8,9,7,-5,4,-2,-9,8/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
braid_crossings = 9 |
braid_width = 4 |
braid_index = 4 |
same_alexander = |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=16.6667%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td>2</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math>q^{15}-6 q^{13}+6 q^{12}+6 q^{11}-17 q^{10}+10 q^9+14 q^8-25 q^7+8 q^6+19 q^5-25 q^4+2 q^3+20 q^2-18 q-3+17 q^{-1} -8 q^{-2} -6 q^{-3} +9 q^{-4} - q^{-5} -3 q^{-6} + q^{-7} </math> |
coloured_jones_3 = <math>2 q^{29}-4 q^{28}-2 q^{27}+q^{26}+15 q^{25}-3 q^{24}-25 q^{23}-4 q^{22}+37 q^{21}+19 q^{20}-51 q^{19}-32 q^{18}+54 q^{17}+50 q^{16}-59 q^{15}-58 q^{14}+51 q^{13}+69 q^{12}-46 q^{11}-70 q^{10}+37 q^9+70 q^8-25 q^7-69 q^6+16 q^5+60 q^4+3 q^3-60 q^2-10 q+43+26 q^{-1} -35 q^{-2} -28 q^{-3} +17 q^{-4} +32 q^{-5} -6 q^{-6} -23 q^{-7} -5 q^{-8} +17 q^{-9} +6 q^{-10} -7 q^{-11} -5 q^{-12} + q^{-13} +3 q^{-14} - q^{-15} </math> |
coloured_jones_4 = <math>q^{48}-6 q^{46}-3 q^{45}+12 q^{44}+14 q^{43}+5 q^{42}-34 q^{41}-46 q^{40}+23 q^{39}+68 q^{38}+73 q^{37}-58 q^{36}-161 q^{35}-30 q^{34}+118 q^{33}+215 q^{32}-7 q^{31}-278 q^{30}-150 q^{29}+100 q^{28}+344 q^{27}+100 q^{26}-319 q^{25}-248 q^{24}+28 q^{23}+392 q^{22}+185 q^{21}-297 q^{20}-276 q^{19}-38 q^{18}+374 q^{17}+217 q^{16}-245 q^{15}-254 q^{14}-92 q^{13}+321 q^{12}+228 q^{11}-173 q^{10}-214 q^9-145 q^8+236 q^7+227 q^6-72 q^5-149 q^4-193 q^3+115 q^2+190 q+32-47 q^{-1} -192 q^{-2} -7 q^{-3} +98 q^{-4} +77 q^{-5} +56 q^{-6} -115 q^{-7} -60 q^{-8} -3 q^{-9} +39 q^{-10} +88 q^{-11} -21 q^{-12} -33 q^{-13} -38 q^{-14} -12 q^{-15} +46 q^{-16} +11 q^{-17} +3 q^{-18} -15 q^{-19} -16 q^{-20} +7 q^{-21} +3 q^{-22} +5 q^{-23} - q^{-24} -3 q^{-25} + q^{-26} </math> |
coloured_jones_5 = <math>2 q^{71}-4 q^{70}-2 q^{69}-2 q^{68}+3 q^{67}+21 q^{66}+19 q^{65}-21 q^{64}-51 q^{63}-49 q^{62}-8 q^{61}+111 q^{60}+154 q^{59}+42 q^{58}-151 q^{57}-283 q^{56}-192 q^{55}+154 q^{54}+472 q^{53}+404 q^{52}-83 q^{51}-626 q^{50}-691 q^{49}-95 q^{48}+727 q^{47}+1010 q^{46}+338 q^{45}-755 q^{44}-1255 q^{43}-637 q^{42}+675 q^{41}+1466 q^{40}+904 q^{39}-563 q^{38}-1549 q^{37}-1124 q^{36}+397 q^{35}+1590 q^{34}+1268 q^{33}-270 q^{32}-1542 q^{31}-1351 q^{30}+145 q^{29}+1495 q^{28}+1373 q^{27}-65 q^{26}-1406 q^{25}-1369 q^{24}-15 q^{23}+1323 q^{22}+1349 q^{21}+84 q^{20}-1221 q^{19}-1314 q^{18}-173 q^{17}+1083 q^{16}+1287 q^{15}+290 q^{14}-944 q^{13}-1226 q^{12}-404 q^{11}+721 q^{10}+1161 q^9+546 q^8-516 q^7-1028 q^6-630 q^5+231 q^4+858 q^3+714 q^2-15 q-619-674 q^{-1} -224 q^{-2} +367 q^{-3} +593 q^{-4} +336 q^{-5} -114 q^{-6} -410 q^{-7} -392 q^{-8} -78 q^{-9} +224 q^{-10} +318 q^{-11} +192 q^{-12} -34 q^{-13} -213 q^{-14} -209 q^{-15} -71 q^{-16} +71 q^{-17} +153 q^{-18} +132 q^{-19} +17 q^{-20} -82 q^{-21} -101 q^{-22} -61 q^{-23} +5 q^{-24} +66 q^{-25} +61 q^{-26} +17 q^{-27} -21 q^{-28} -33 q^{-29} -24 q^{-30} -5 q^{-31} +18 q^{-32} +14 q^{-33} +3 q^{-34} -3 q^{-35} -3 q^{-36} -5 q^{-37} + q^{-38} +3 q^{-39} - q^{-40} </math> |
coloured_jones_6 = <math>q^{99}-6 q^{97}-3 q^{96}+6 q^{95}+11 q^{94}+14 q^{93}+12 q^{92}-7 q^{91}-64 q^{90}-83 q^{89}-18 q^{88}+78 q^{87}+162 q^{86}+204 q^{85}+92 q^{84}-220 q^{83}-477 q^{82}-434 q^{81}-65 q^{80}+445 q^{79}+935 q^{78}+897 q^{77}+32 q^{76}-1075 q^{75}-1656 q^{74}-1225 q^{73}+77 q^{72}+1873 q^{71}+2748 q^{70}+1631 q^{69}-829 q^{68}-3059 q^{67}-3524 q^{66}-1819 q^{65}+1792 q^{64}+4634 q^{63}+4325 q^{62}+970 q^{61}-3303 q^{60}-5637 q^{59}-4594 q^{58}+244 q^{57}+5213 q^{56}+6574 q^{55}+3386 q^{54}-2186 q^{53}-6367 q^{52}-6680 q^{51}-1701 q^{50}+4511 q^{49}+7418 q^{48}+5032 q^{47}-767 q^{46}-5949 q^{45}-7440 q^{44}-2940 q^{43}+3523 q^{42}+7244 q^{41}+5580 q^{40}+139 q^{39}-5253 q^{38}-7358 q^{37}-3392 q^{36}+2818 q^{35}+6777 q^{34}+5549 q^{33}+612 q^{32}-4638 q^{31}-7027 q^{30}-3574 q^{29}+2217 q^{28}+6240 q^{27}+5439 q^{26}+1127 q^{25}-3892 q^{24}-6593 q^{23}-3894 q^{22}+1292 q^{21}+5430 q^{20}+5347 q^{19}+1991 q^{18}-2664 q^{17}-5850 q^{16}-4346 q^{15}-152 q^{14}+4030 q^{13}+4979 q^{12}+3060 q^{11}-844 q^{10}-4434 q^9-4462 q^8-1809 q^7+1944 q^6+3828 q^5+3677 q^4+1147 q^3-2236 q^2-3594 q-2831-290 q^{-1} +1775 q^{-2} +3078 q^{-3} +2319 q^{-4} +68 q^{-5} -1695 q^{-6} -2423 q^{-7} -1547 q^{-8} -320 q^{-9} +1362 q^{-10} +1925 q^{-11} +1247 q^{-12} +161 q^{-13} -917 q^{-14} -1199 q^{-15} -1184 q^{-16} -195 q^{-17} +578 q^{-18} +881 q^{-19} +759 q^{-20} +271 q^{-21} -126 q^{-22} -684 q^{-23} -536 q^{-24} -284 q^{-25} +48 q^{-26} +284 q^{-27} +368 q^{-28} +360 q^{-29} -15 q^{-30} -124 q^{-31} -236 q^{-32} -196 q^{-33} -118 q^{-34} +28 q^{-35} +186 q^{-36} +103 q^{-37} +89 q^{-38} -2 q^{-39} -48 q^{-40} -94 q^{-41} -62 q^{-42} +12 q^{-43} +10 q^{-44} +39 q^{-45} +25 q^{-46} +17 q^{-47} -16 q^{-48} -17 q^{-49} - q^{-50} -7 q^{-51} +3 q^{-52} +3 q^{-53} +5 q^{-54} - q^{-55} -3 q^{-56} + q^{-57} </math> |
coloured_jones_7 = <math>2 q^{131}-4 q^{130}-2 q^{129}-2 q^{128}+15 q^{126}+19 q^{125}+15 q^{124}-13 q^{123}-47 q^{122}-70 q^{121}-68 q^{120}-28 q^{119}+109 q^{118}+246 q^{117}+278 q^{116}+144 q^{115}-160 q^{114}-489 q^{113}-725 q^{112}-649 q^{111}-75 q^{110}+846 q^{109}+1567 q^{108}+1653 q^{107}+791 q^{106}-812 q^{105}-2516 q^{104}-3461 q^{103}-2611 q^{102}+49 q^{101}+3396 q^{100}+5762 q^{99}+5505 q^{98}+2098 q^{97}-3244 q^{96}-8154 q^{95}-9574 q^{94}-5881 q^{93}+1670 q^{92}+9855 q^{91}+13991 q^{90}+11087 q^{89}+1803 q^{88}-9990 q^{87}-17999 q^{86}-17161 q^{85}-6983 q^{84}+8363 q^{83}+20776 q^{82}+22927 q^{81}+13091 q^{80}-4888 q^{79}-21648 q^{78}-27727 q^{77}-19347 q^{76}+351 q^{75}+20885 q^{74}+30785 q^{73}+24610 q^{72}+4578 q^{71}-18666 q^{70}-32143 q^{69}-28605 q^{68}-8988 q^{67}+15921 q^{66}+32023 q^{65}+30941 q^{64}+12461 q^{63}-13064 q^{62}-31045 q^{61}-32019 q^{60}-14775 q^{59}+10730 q^{58}+29642 q^{57}+32091 q^{56}+16131 q^{55}-8934 q^{54}-28287 q^{53}-31718 q^{52}-16723 q^{51}+7756 q^{50}+27068 q^{49}+31078 q^{48}+16987 q^{47}-6870 q^{46}-26075 q^{45}-30510 q^{44}-17103 q^{43}+6142 q^{42}+25133 q^{41}+29948 q^{40}+17342 q^{39}-5240 q^{38}-24091 q^{37}-29454 q^{36}-17828 q^{35}+4011 q^{34}+22811 q^{33}+28917 q^{32}+18523 q^{31}-2320 q^{30}-20988 q^{29}-28182 q^{28}-19533 q^{27}+19 q^{26}+18678 q^{25}+27138 q^{24}+20527 q^{23}+2746 q^{22}-15509 q^{21}-25433 q^{20}-21539 q^{19}-6000 q^{18}+11708 q^{17}+23066 q^{16}+21943 q^{15}+9245 q^{14}-7100 q^{13}-19589 q^{12}-21648 q^{11}-12361 q^{10}+2229 q^9+15299 q^8+20080 q^7+14458 q^6+2675 q^5-10035 q^4-17269 q^3-15407 q^2-6824 q+4661+13133 q^{-1} +14552 q^{-2} +9688 q^{-3} +496 q^{-4} -8266 q^{-5} -12190 q^{-6} -10696 q^{-7} -4404 q^{-8} +3309 q^{-9} +8477 q^{-10} +9890 q^{-11} +6668 q^{-12} +794 q^{-13} -4385 q^{-14} -7487 q^{-15} -6944 q^{-16} -3494 q^{-17} +670 q^{-18} +4387 q^{-19} +5691 q^{-20} +4371 q^{-21} +1803 q^{-22} -1381 q^{-23} -3472 q^{-24} -3781 q^{-25} -2888 q^{-26} -721 q^{-27} +1299 q^{-28} +2355 q^{-29} +2579 q^{-30} +1629 q^{-31} +318 q^{-32} -772 q^{-33} -1648 q^{-34} -1589 q^{-35} -970 q^{-36} -256 q^{-37} +579 q^{-38} +907 q^{-39} +926 q^{-40} +734 q^{-41} +138 q^{-42} -303 q^{-43} -529 q^{-44} -605 q^{-45} -368 q^{-46} -146 q^{-47} +94 q^{-48} +360 q^{-49} +332 q^{-50} +236 q^{-51} +88 q^{-52} -96 q^{-53} -140 q^{-54} -175 q^{-55} -152 q^{-56} -30 q^{-57} +42 q^{-58} +84 q^{-59} +90 q^{-60} +32 q^{-61} +21 q^{-62} -12 q^{-63} -42 q^{-64} -30 q^{-65} -18 q^{-66} +4 q^{-67} +15 q^{-68} +4 q^{-69} +5 q^{-70} +7 q^{-71} -3 q^{-72} -3 q^{-73} -5 q^{-74} + q^{-75} +3 q^{-76} - q^{-77} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 47]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[8, 3, 9, 4], X[2, 15, 3, 16],
X[14, 9, 15, 10], X[10, 6, 11, 5], X[4, 14, 5, 13], X[11, 1, 12, 18],
X[17, 13, 18, 12]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 47]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -7, 6, -1, 2, -3, 5, -6, -8, 9, 7, -5, 4, -2, -9, 8]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 47]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 10, 16, 14, -18, 4, 2, -12]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 47]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, 2, -1, 2, 3, 2, -1, 2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 47]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 47]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_47_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 47]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, {4, 6}, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 47]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 6 2 3
-5 + t - -- + - + 6 t - 4 t + t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 47]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 - z + 2 z + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 47]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 47]], KnotSignature[Knot[9, 47]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{27, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 47]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 3 4 5
-3 - q + - + 5 q - 5 q + 4 q - 4 q + 2 q
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 47]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 47]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -4 -2 2 4 6 8 12 14 16 20
2 - q + q + q + 2 q - q + q - 2 q - q - q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 47]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6
-6 2 -2 2 3 z 4 z 4 z 4 z z
1 + a - -- + a - 2 z - ---- + ---- - z - -- + ---- + --
4 4 2 4 2 2
a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 47]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2
-6 2 -2 3 z 5 z 2 z 2 3 z 9 z 11 z
1 - a - -- - a - --- - --- - --- + 5 z + ---- + ---- + ----- +
4 5 3 a 6 4 2
a a a a a a
3 3 3 4 4 5 5 5
3 z 6 z z 3 4 7 z 16 z z 4 z 4 z
---- + ---- + -- - 2 a z - 9 z - ---- - ----- + -- - ---- - ---- +
5 3 a 4 2 5 3 a
a a a a a a
6 6 7 7
5 6 3 z 6 z 2 z 2 z
a z + 3 z + ---- + ---- + ---- + ----
4 2 3 a
a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 47]], Vassiliev[3][Knot[9, 47]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 47]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 1 2 q 3 5
4 q + 2 q + ----- + ----- + ---- + --- + --- + 2 q t + 3 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 11 4
2 q t + 2 q t + 2 q t + 2 q t + 2 q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 47], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 -5 9 6 8 17 2 3 4
-3 + q - -- - q + -- - -- - -- + -- - 18 q + 20 q + 2 q - 25 q +
6 4 3 2 q
q q q q
5 6 7 8 9 10 11 12
19 q + 8 q - 25 q + 14 q + 10 q - 17 q + 6 q + 6 q -
13 15
6 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 16:58, 1 September 2005

9 46.gif

9_46

9 48.gif

9_48

9 47.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 47's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 47 at Knotilus!


Simple square depiction
Threefold symmetrical depiction
Ornate threefold symmetrical depiction

Knot presentations

Planar diagram presentation X6271 X16,8,17,7 X8394 X2,15,3,16 X14,9,15,10 X10,6,11,5 X4,14,5,13 X11,1,12,18 X17,13,18,12
Gauss code 1, -4, 3, -7, 6, -1, 2, -3, 5, -6, -8, 9, 7, -5, 4, -2, -9, 8
Dowker-Thistlethwaite code 6 8 10 16 14 -18 4 2 -12
Conway Notation [8*-20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 47 ML.gif 9 47 AP.gif
[{5, 9}, {8, 1}, {9, 3}, {2, 7}, {4, 8}, {3, 6}, {1, 5}, {7, 4}, {6, 2}]

[edit Notes on presentations of 9 47]

Knot 9_47.
A graph, knot 9_47.
A part of a link and a part of a graph.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-2][-7]
Hyperbolic Volume 10.05
A-Polynomial See Data:9 47/A-polynomial

[edit Notes for 9 47's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 47's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 47. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-101234χ
11       22
9      2 -2
7     22 0
5    32  -1
3   22   0
1  24    2
-1 11     0
-3 2      2
-51       -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials