10 45: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 45 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-10,9,-3,4,-2,5,-6,8,-9,10,-8,7,-5/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=45|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-10,9,-3,4,-2,5,-6,8,-9,10,-8,7,-5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 26: Line 15:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>3</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>3</td></tr>
Line 73: Line 41:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{15}-4 q^{14}+2 q^{13}+13 q^{12}-24 q^{11}+51 q^9-61 q^8-18 q^7+116 q^6-98 q^5-55 q^4+180 q^3-112 q^2-94 q+207-94 q^{-1} -112 q^{-2} +180 q^{-3} -55 q^{-4} -98 q^{-5} +116 q^{-6} -18 q^{-7} -61 q^{-8} +51 q^{-9} -24 q^{-11} +13 q^{-12} +2 q^{-13} -4 q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>-q^{30}+4 q^{29}-2 q^{28}-8 q^{27}+23 q^{25}+6 q^{24}-53 q^{23}-16 q^{22}+90 q^{21}+54 q^{20}-152 q^{19}-110 q^{18}+213 q^{17}+214 q^{16}-288 q^{15}-341 q^{14}+333 q^{13}+518 q^{12}-369 q^{11}-699 q^{10}+359 q^9+893 q^8-323 q^7-1063 q^6+254 q^5+1197 q^4-160 q^3-1285 q^2+55 q+1315+55 q^{-1} -1285 q^{-2} -160 q^{-3} +1197 q^{-4} +254 q^{-5} -1063 q^{-6} -323 q^{-7} +893 q^{-8} +359 q^{-9} -699 q^{-10} -369 q^{-11} +518 q^{-12} +333 q^{-13} -341 q^{-14} -288 q^{-15} +214 q^{-16} +213 q^{-17} -110 q^{-18} -152 q^{-19} +54 q^{-20} +90 q^{-21} -16 q^{-22} -53 q^{-23} +6 q^{-24} +23 q^{-25} -8 q^{-27} -2 q^{-28} +4 q^{-29} - q^{-30} </math> |
{{Display Coloured Jones|J2=<math>q^{15}-4 q^{14}+2 q^{13}+13 q^{12}-24 q^{11}+51 q^9-61 q^8-18 q^7+116 q^6-98 q^5-55 q^4+180 q^3-112 q^2-94 q+207-94 q^{-1} -112 q^{-2} +180 q^{-3} -55 q^{-4} -98 q^{-5} +116 q^{-6} -18 q^{-7} -61 q^{-8} +51 q^{-9} -24 q^{-11} +13 q^{-12} +2 q^{-13} -4 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+4 q^{29}-2 q^{28}-8 q^{27}+23 q^{25}+6 q^{24}-53 q^{23}-16 q^{22}+90 q^{21}+54 q^{20}-152 q^{19}-110 q^{18}+213 q^{17}+214 q^{16}-288 q^{15}-341 q^{14}+333 q^{13}+518 q^{12}-369 q^{11}-699 q^{10}+359 q^9+893 q^8-323 q^7-1063 q^6+254 q^5+1197 q^4-160 q^3-1285 q^2+55 q+1315+55 q^{-1} -1285 q^{-2} -160 q^{-3} +1197 q^{-4} +254 q^{-5} -1063 q^{-6} -323 q^{-7} +893 q^{-8} +359 q^{-9} -699 q^{-10} -369 q^{-11} +518 q^{-12} +333 q^{-13} -341 q^{-14} -288 q^{-15} +214 q^{-16} +213 q^{-17} -110 q^{-18} -152 q^{-19} +54 q^{-20} +90 q^{-21} -16 q^{-22} -53 q^{-23} +6 q^{-24} +23 q^{-25} -8 q^{-27} -2 q^{-28} +4 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-4 q^{49}+2 q^{48}+8 q^{47}-5 q^{46}+q^{45}-29 q^{44}+12 q^{43}+54 q^{42}-9 q^{41}-146 q^{39}+8 q^{38}+212 q^{37}+61 q^{36}+25 q^{35}-496 q^{34}-136 q^{33}+524 q^{32}+400 q^{31}+261 q^{30}-1204 q^{29}-729 q^{28}+822 q^{27}+1213 q^{26}+1108 q^{25}-2114 q^{24}-2056 q^{23}+620 q^{22}+2366 q^{21}+2921 q^{20}-2686 q^{19}-3976 q^{18}-516 q^{17}+3306 q^{16}+5506 q^{15}-2414 q^{14}-5838 q^{13}-2466 q^{12}+3503 q^{11}+8113 q^{10}-1310 q^9-6976 q^8-4591 q^7+2878 q^6+9950 q^5+200 q^4-7103 q^3-6257 q^2+1686 q+10601+1686 q^{-1} -6257 q^{-2} -7103 q^{-3} +200 q^{-4} +9950 q^{-5} +2878 q^{-6} -4591 q^{-7} -6976 q^{-8} -1310 q^{-9} +8113 q^{-10} +3503 q^{-11} -2466 q^{-12} -5838 q^{-13} -2414 q^{-14} +5506 q^{-15} +3306 q^{-16} -516 q^{-17} -3976 q^{-18} -2686 q^{-19} +2921 q^{-20} +2366 q^{-21} +620 q^{-22} -2056 q^{-23} -2114 q^{-24} +1108 q^{-25} +1213 q^{-26} +822 q^{-27} -729 q^{-28} -1204 q^{-29} +261 q^{-30} +400 q^{-31} +524 q^{-32} -136 q^{-33} -496 q^{-34} +25 q^{-35} +61 q^{-36} +212 q^{-37} +8 q^{-38} -146 q^{-39} -9 q^{-41} +54 q^{-42} +12 q^{-43} -29 q^{-44} + q^{-45} -5 q^{-46} +8 q^{-47} +2 q^{-48} -4 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+4 q^{74}-2 q^{73}-8 q^{72}+5 q^{71}+4 q^{70}+5 q^{69}+11 q^{68}-13 q^{67}-45 q^{66}-5 q^{65}+46 q^{64}+64 q^{63}+48 q^{62}-67 q^{61}-184 q^{60}-129 q^{59}+133 q^{58}+364 q^{57}+289 q^{56}-140 q^{55}-656 q^{54}-702 q^{53}+81 q^{52}+1151 q^{51}+1355 q^{50}+189 q^{49}-1642 q^{48}-2538 q^{47}-970 q^{46}+2272 q^{45}+4181 q^{44}+2389 q^{43}-2460 q^{42}-6416 q^{41}-4919 q^{40}+2157 q^{39}+8930 q^{38}+8532 q^{37}-562 q^{36}-11492 q^{35}-13432 q^{34}-2348 q^{33}+13380 q^{32}+19185 q^{31}+7200 q^{30}-14278 q^{29}-25476 q^{28}-13511 q^{27}+13493 q^{26}+31474 q^{25}+21371 q^{24}-11034 q^{23}-36775 q^{22}-29779 q^{21}+6832 q^{20}+40644 q^{19}+38375 q^{18}-1307 q^{17}-43017 q^{16}-46293 q^{15}-5035 q^{14}+43723 q^{13}+53105 q^{12}+11695 q^{11}-42967 q^{10}-58510 q^9-18183 q^8+41006 q^7+62330 q^6+24174 q^5-37984 q^4-64621 q^3-29521 q^2+34135 q+65381+34135 q^{-1} -29521 q^{-2} -64621 q^{-3} -37984 q^{-4} +24174 q^{-5} +62330 q^{-6} +41006 q^{-7} -18183 q^{-8} -58510 q^{-9} -42967 q^{-10} +11695 q^{-11} +53105 q^{-12} +43723 q^{-13} -5035 q^{-14} -46293 q^{-15} -43017 q^{-16} -1307 q^{-17} +38375 q^{-18} +40644 q^{-19} +6832 q^{-20} -29779 q^{-21} -36775 q^{-22} -11034 q^{-23} +21371 q^{-24} +31474 q^{-25} +13493 q^{-26} -13511 q^{-27} -25476 q^{-28} -14278 q^{-29} +7200 q^{-30} +19185 q^{-31} +13380 q^{-32} -2348 q^{-33} -13432 q^{-34} -11492 q^{-35} -562 q^{-36} +8532 q^{-37} +8930 q^{-38} +2157 q^{-39} -4919 q^{-40} -6416 q^{-41} -2460 q^{-42} +2389 q^{-43} +4181 q^{-44} +2272 q^{-45} -970 q^{-46} -2538 q^{-47} -1642 q^{-48} +189 q^{-49} +1355 q^{-50} +1151 q^{-51} +81 q^{-52} -702 q^{-53} -656 q^{-54} -140 q^{-55} +289 q^{-56} +364 q^{-57} +133 q^{-58} -129 q^{-59} -184 q^{-60} -67 q^{-61} +48 q^{-62} +64 q^{-63} +46 q^{-64} -5 q^{-65} -45 q^{-66} -13 q^{-67} +11 q^{-68} +5 q^{-69} +4 q^{-70} +5 q^{-71} -8 q^{-72} -2 q^{-73} +4 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-4 q^{104}+2 q^{103}+8 q^{102}-5 q^{101}-4 q^{100}-10 q^{99}+13 q^{98}-10 q^{97}+4 q^{96}+59 q^{95}-25 q^{94}-40 q^{93}-74 q^{92}+32 q^{91}-3 q^{90}+57 q^{89}+267 q^{88}-34 q^{87}-197 q^{86}-401 q^{85}-45 q^{84}-32 q^{83}+348 q^{82}+1079 q^{81}+263 q^{80}-525 q^{79}-1592 q^{78}-911 q^{77}-621 q^{76}+1081 q^{75}+3656 q^{74}+2306 q^{73}-256 q^{72}-4396 q^{71}-4571 q^{70}-4277 q^{69}+1134 q^{68}+9435 q^{67}+9801 q^{66}+4592 q^{65}-7390 q^{64}-13521 q^{63}-17049 q^{62}-5540 q^{61}+16413 q^{60}+27073 q^{59}+23108 q^{58}-1876 q^{57}-25158 q^{56}-45479 q^{55}-31763 q^{54}+12557 q^{53}+50988 q^{52}+64242 q^{51}+29277 q^{50}-23924 q^{49}-85653 q^{48}-88822 q^{47}-23602 q^{46}+62366 q^{45}+122862 q^{44}+99398 q^{43}+15272 q^{42}-114745 q^{41}-169845 q^{40}-106356 q^{39}+33185 q^{38}+172614 q^{37}+199414 q^{36}+106232 q^{35}-102570 q^{34}-245085 q^{33}-223592 q^{32}-49355 q^{31}+181924 q^{30}+296662 q^{29}+233403 q^{28}-37527 q^{27}-281967 q^{26}-340037 q^{25}-167562 q^{24}+140188 q^{23}+358168 q^{22}+360008 q^{21}+62158 q^{20}-270025 q^{19}-422822 q^{18}-285963 q^{17}+64472 q^{16}+373309 q^{15}+454649 q^{14}+164639 q^{13}-223339 q^{12}-461148 q^{11}-377316 q^{10}-18757 q^9+352647 q^8+507449 q^7+248392 q^6-161820 q^5-462289 q^4-434603 q^3-94324 q^2+309843 q+523615+309843 q^{-1} -94324 q^{-2} -434603 q^{-3} -462289 q^{-4} -161820 q^{-5} +248392 q^{-6} +507449 q^{-7} +352647 q^{-8} -18757 q^{-9} -377316 q^{-10} -461148 q^{-11} -223339 q^{-12} +164639 q^{-13} +454649 q^{-14} +373309 q^{-15} +64472 q^{-16} -285963 q^{-17} -422822 q^{-18} -270025 q^{-19} +62158 q^{-20} +360008 q^{-21} +358168 q^{-22} +140188 q^{-23} -167562 q^{-24} -340037 q^{-25} -281967 q^{-26} -37527 q^{-27} +233403 q^{-28} +296662 q^{-29} +181924 q^{-30} -49355 q^{-31} -223592 q^{-32} -245085 q^{-33} -102570 q^{-34} +106232 q^{-35} +199414 q^{-36} +172614 q^{-37} +33185 q^{-38} -106356 q^{-39} -169845 q^{-40} -114745 q^{-41} +15272 q^{-42} +99398 q^{-43} +122862 q^{-44} +62366 q^{-45} -23602 q^{-46} -88822 q^{-47} -85653 q^{-48} -23924 q^{-49} +29277 q^{-50} +64242 q^{-51} +50988 q^{-52} +12557 q^{-53} -31763 q^{-54} -45479 q^{-55} -25158 q^{-56} -1876 q^{-57} +23108 q^{-58} +27073 q^{-59} +16413 q^{-60} -5540 q^{-61} -17049 q^{-62} -13521 q^{-63} -7390 q^{-64} +4592 q^{-65} +9801 q^{-66} +9435 q^{-67} +1134 q^{-68} -4277 q^{-69} -4571 q^{-70} -4396 q^{-71} -256 q^{-72} +2306 q^{-73} +3656 q^{-74} +1081 q^{-75} -621 q^{-76} -911 q^{-77} -1592 q^{-78} -525 q^{-79} +263 q^{-80} +1079 q^{-81} +348 q^{-82} -32 q^{-83} -45 q^{-84} -401 q^{-85} -197 q^{-86} -34 q^{-87} +267 q^{-88} +57 q^{-89} -3 q^{-90} +32 q^{-91} -74 q^{-92} -40 q^{-93} -25 q^{-94} +59 q^{-95} +4 q^{-96} -10 q^{-97} +13 q^{-98} -10 q^{-99} -4 q^{-100} -5 q^{-101} +8 q^{-102} +2 q^{-103} -4 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+4 q^{139}-2 q^{138}-8 q^{137}+5 q^{136}+4 q^{135}+10 q^{134}-8 q^{133}-14 q^{132}+19 q^{131}-18 q^{130}-29 q^{129}+19 q^{128}+34 q^{127}+70 q^{126}-8 q^{125}-95 q^{124}-q^{123}-100 q^{122}-96 q^{121}+90 q^{120}+166 q^{119}+386 q^{118}+123 q^{117}-322 q^{116}-317 q^{115}-631 q^{114}-467 q^{113}+266 q^{112}+762 q^{111}+1670 q^{110}+1208 q^{109}-463 q^{108}-1515 q^{107}-3107 q^{106}-2772 q^{105}-291 q^{104}+2314 q^{103}+6161 q^{102}+6463 q^{101}+2175 q^{100}-3301 q^{99}-10657 q^{98}-12818 q^{97}-7278 q^{96}+2220 q^{95}+16744 q^{94}+24415 q^{93}+18496 q^{92}+2513 q^{91}-23614 q^{90}-41366 q^{89}-38652 q^{88}-16667 q^{87}+26513 q^{86}+64437 q^{85}+73119 q^{84}+46302 q^{83}-20551 q^{82}-89764 q^{81}-122265 q^{80}-99742 q^{79}-7071 q^{78}+109229 q^{77}+187356 q^{76}+184499 q^{75}+67310 q^{74}-109616 q^{73}-258467 q^{72}-303242 q^{71}-176407 q^{70}+71385 q^{69}+322592 q^{68}+452773 q^{67}+342359 q^{66}+25746 q^{65}-355028 q^{64}-618567 q^{63}-569164 q^{62}-200388 q^{61}+330574 q^{60}+776717 q^{59}+845393 q^{58}+462550 q^{57}-221392 q^{56}-896607 q^{55}-1150732 q^{54}-808577 q^{53}+11346 q^{52}+945398 q^{51}+1450627 q^{50}+1221252 q^{49}+306842 q^{48}-897550 q^{47}-1711298 q^{46}-1669310 q^{45}-719003 q^{44}+739059 q^{43}+1896713 q^{42}+2114554 q^{41}+1201843 q^{40}-472021 q^{39}-1986866 q^{38}-2519411 q^{37}-1716317 q^{36}+115361 q^{35}+1970962 q^{34}+2851981 q^{33}+2225279 q^{32}+302357 q^{31}-1857566 q^{30}-3094980 q^{29}-2692445 q^{28}-744990 q^{27}+1665046 q^{26}+3242566 q^{25}+3092927 q^{24}+1180258 q^{23}-1419298 q^{22}-3302976 q^{21}-3414284 q^{20}-1581554 q^{19}+1147652 q^{18}+3291635 q^{17}+3654409 q^{16}+1933029 q^{15}-871218 q^{14}-3226808 q^{13}-3821796 q^{12}-2230153 q^{11}+605219 q^{10}+3125712 q^9+3927949 q^8+2475790 q^7-354513 q^6-2998849 q^5-3985601 q^4-2679467 q^3+116463 q^2+2851088 q+4003929+2851088 q^{-1} +116463 q^{-2} -2679467 q^{-3} -3985601 q^{-4} -2998849 q^{-5} -354513 q^{-6} +2475790 q^{-7} +3927949 q^{-8} +3125712 q^{-9} +605219 q^{-10} -2230153 q^{-11} -3821796 q^{-12} -3226808 q^{-13} -871218 q^{-14} +1933029 q^{-15} +3654409 q^{-16} +3291635 q^{-17} +1147652 q^{-18} -1581554 q^{-19} -3414284 q^{-20} -3302976 q^{-21} -1419298 q^{-22} +1180258 q^{-23} +3092927 q^{-24} +3242566 q^{-25} +1665046 q^{-26} -744990 q^{-27} -2692445 q^{-28} -3094980 q^{-29} -1857566 q^{-30} +302357 q^{-31} +2225279 q^{-32} +2851981 q^{-33} +1970962 q^{-34} +115361 q^{-35} -1716317 q^{-36} -2519411 q^{-37} -1986866 q^{-38} -472021 q^{-39} +1201843 q^{-40} +2114554 q^{-41} +1896713 q^{-42} +739059 q^{-43} -719003 q^{-44} -1669310 q^{-45} -1711298 q^{-46} -897550 q^{-47} +306842 q^{-48} +1221252 q^{-49} +1450627 q^{-50} +945398 q^{-51} +11346 q^{-52} -808577 q^{-53} -1150732 q^{-54} -896607 q^{-55} -221392 q^{-56} +462550 q^{-57} +845393 q^{-58} +776717 q^{-59} +330574 q^{-60} -200388 q^{-61} -569164 q^{-62} -618567 q^{-63} -355028 q^{-64} +25746 q^{-65} +342359 q^{-66} +452773 q^{-67} +322592 q^{-68} +71385 q^{-69} -176407 q^{-70} -303242 q^{-71} -258467 q^{-72} -109616 q^{-73} +67310 q^{-74} +184499 q^{-75} +187356 q^{-76} +109229 q^{-77} -7071 q^{-78} -99742 q^{-79} -122265 q^{-80} -89764 q^{-81} -20551 q^{-82} +46302 q^{-83} +73119 q^{-84} +64437 q^{-85} +26513 q^{-86} -16667 q^{-87} -38652 q^{-88} -41366 q^{-89} -23614 q^{-90} +2513 q^{-91} +18496 q^{-92} +24415 q^{-93} +16744 q^{-94} +2220 q^{-95} -7278 q^{-96} -12818 q^{-97} -10657 q^{-98} -3301 q^{-99} +2175 q^{-100} +6463 q^{-101} +6161 q^{-102} +2314 q^{-103} -291 q^{-104} -2772 q^{-105} -3107 q^{-106} -1515 q^{-107} -463 q^{-108} +1208 q^{-109} +1670 q^{-110} +762 q^{-111} +266 q^{-112} -467 q^{-113} -631 q^{-114} -317 q^{-115} -322 q^{-116} +123 q^{-117} +386 q^{-118} +166 q^{-119} +90 q^{-120} -96 q^{-121} -100 q^{-122} - q^{-123} -95 q^{-124} -8 q^{-125} +70 q^{-126} +34 q^{-127} +19 q^{-128} -29 q^{-129} -18 q^{-130} +19 q^{-131} -14 q^{-132} -8 q^{-133} +10 q^{-134} +4 q^{-135} +5 q^{-136} -8 q^{-137} -2 q^{-138} +4 q^{-139} - q^{-140} </math>}}
coloured_jones_4 = <math>q^{50}-4 q^{49}+2 q^{48}+8 q^{47}-5 q^{46}+q^{45}-29 q^{44}+12 q^{43}+54 q^{42}-9 q^{41}-146 q^{39}+8 q^{38}+212 q^{37}+61 q^{36}+25 q^{35}-496 q^{34}-136 q^{33}+524 q^{32}+400 q^{31}+261 q^{30}-1204 q^{29}-729 q^{28}+822 q^{27}+1213 q^{26}+1108 q^{25}-2114 q^{24}-2056 q^{23}+620 q^{22}+2366 q^{21}+2921 q^{20}-2686 q^{19}-3976 q^{18}-516 q^{17}+3306 q^{16}+5506 q^{15}-2414 q^{14}-5838 q^{13}-2466 q^{12}+3503 q^{11}+8113 q^{10}-1310 q^9-6976 q^8-4591 q^7+2878 q^6+9950 q^5+200 q^4-7103 q^3-6257 q^2+1686 q+10601+1686 q^{-1} -6257 q^{-2} -7103 q^{-3} +200 q^{-4} +9950 q^{-5} +2878 q^{-6} -4591 q^{-7} -6976 q^{-8} -1310 q^{-9} +8113 q^{-10} +3503 q^{-11} -2466 q^{-12} -5838 q^{-13} -2414 q^{-14} +5506 q^{-15} +3306 q^{-16} -516 q^{-17} -3976 q^{-18} -2686 q^{-19} +2921 q^{-20} +2366 q^{-21} +620 q^{-22} -2056 q^{-23} -2114 q^{-24} +1108 q^{-25} +1213 q^{-26} +822 q^{-27} -729 q^{-28} -1204 q^{-29} +261 q^{-30} +400 q^{-31} +524 q^{-32} -136 q^{-33} -496 q^{-34} +25 q^{-35} +61 q^{-36} +212 q^{-37} +8 q^{-38} -146 q^{-39} -9 q^{-41} +54 q^{-42} +12 q^{-43} -29 q^{-44} + q^{-45} -5 q^{-46} +8 q^{-47} +2 q^{-48} -4 q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>-q^{75}+4 q^{74}-2 q^{73}-8 q^{72}+5 q^{71}+4 q^{70}+5 q^{69}+11 q^{68}-13 q^{67}-45 q^{66}-5 q^{65}+46 q^{64}+64 q^{63}+48 q^{62}-67 q^{61}-184 q^{60}-129 q^{59}+133 q^{58}+364 q^{57}+289 q^{56}-140 q^{55}-656 q^{54}-702 q^{53}+81 q^{52}+1151 q^{51}+1355 q^{50}+189 q^{49}-1642 q^{48}-2538 q^{47}-970 q^{46}+2272 q^{45}+4181 q^{44}+2389 q^{43}-2460 q^{42}-6416 q^{41}-4919 q^{40}+2157 q^{39}+8930 q^{38}+8532 q^{37}-562 q^{36}-11492 q^{35}-13432 q^{34}-2348 q^{33}+13380 q^{32}+19185 q^{31}+7200 q^{30}-14278 q^{29}-25476 q^{28}-13511 q^{27}+13493 q^{26}+31474 q^{25}+21371 q^{24}-11034 q^{23}-36775 q^{22}-29779 q^{21}+6832 q^{20}+40644 q^{19}+38375 q^{18}-1307 q^{17}-43017 q^{16}-46293 q^{15}-5035 q^{14}+43723 q^{13}+53105 q^{12}+11695 q^{11}-42967 q^{10}-58510 q^9-18183 q^8+41006 q^7+62330 q^6+24174 q^5-37984 q^4-64621 q^3-29521 q^2+34135 q+65381+34135 q^{-1} -29521 q^{-2} -64621 q^{-3} -37984 q^{-4} +24174 q^{-5} +62330 q^{-6} +41006 q^{-7} -18183 q^{-8} -58510 q^{-9} -42967 q^{-10} +11695 q^{-11} +53105 q^{-12} +43723 q^{-13} -5035 q^{-14} -46293 q^{-15} -43017 q^{-16} -1307 q^{-17} +38375 q^{-18} +40644 q^{-19} +6832 q^{-20} -29779 q^{-21} -36775 q^{-22} -11034 q^{-23} +21371 q^{-24} +31474 q^{-25} +13493 q^{-26} -13511 q^{-27} -25476 q^{-28} -14278 q^{-29} +7200 q^{-30} +19185 q^{-31} +13380 q^{-32} -2348 q^{-33} -13432 q^{-34} -11492 q^{-35} -562 q^{-36} +8532 q^{-37} +8930 q^{-38} +2157 q^{-39} -4919 q^{-40} -6416 q^{-41} -2460 q^{-42} +2389 q^{-43} +4181 q^{-44} +2272 q^{-45} -970 q^{-46} -2538 q^{-47} -1642 q^{-48} +189 q^{-49} +1355 q^{-50} +1151 q^{-51} +81 q^{-52} -702 q^{-53} -656 q^{-54} -140 q^{-55} +289 q^{-56} +364 q^{-57} +133 q^{-58} -129 q^{-59} -184 q^{-60} -67 q^{-61} +48 q^{-62} +64 q^{-63} +46 q^{-64} -5 q^{-65} -45 q^{-66} -13 q^{-67} +11 q^{-68} +5 q^{-69} +4 q^{-70} +5 q^{-71} -8 q^{-72} -2 q^{-73} +4 q^{-74} - q^{-75} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{105}-4 q^{104}+2 q^{103}+8 q^{102}-5 q^{101}-4 q^{100}-10 q^{99}+13 q^{98}-10 q^{97}+4 q^{96}+59 q^{95}-25 q^{94}-40 q^{93}-74 q^{92}+32 q^{91}-3 q^{90}+57 q^{89}+267 q^{88}-34 q^{87}-197 q^{86}-401 q^{85}-45 q^{84}-32 q^{83}+348 q^{82}+1079 q^{81}+263 q^{80}-525 q^{79}-1592 q^{78}-911 q^{77}-621 q^{76}+1081 q^{75}+3656 q^{74}+2306 q^{73}-256 q^{72}-4396 q^{71}-4571 q^{70}-4277 q^{69}+1134 q^{68}+9435 q^{67}+9801 q^{66}+4592 q^{65}-7390 q^{64}-13521 q^{63}-17049 q^{62}-5540 q^{61}+16413 q^{60}+27073 q^{59}+23108 q^{58}-1876 q^{57}-25158 q^{56}-45479 q^{55}-31763 q^{54}+12557 q^{53}+50988 q^{52}+64242 q^{51}+29277 q^{50}-23924 q^{49}-85653 q^{48}-88822 q^{47}-23602 q^{46}+62366 q^{45}+122862 q^{44}+99398 q^{43}+15272 q^{42}-114745 q^{41}-169845 q^{40}-106356 q^{39}+33185 q^{38}+172614 q^{37}+199414 q^{36}+106232 q^{35}-102570 q^{34}-245085 q^{33}-223592 q^{32}-49355 q^{31}+181924 q^{30}+296662 q^{29}+233403 q^{28}-37527 q^{27}-281967 q^{26}-340037 q^{25}-167562 q^{24}+140188 q^{23}+358168 q^{22}+360008 q^{21}+62158 q^{20}-270025 q^{19}-422822 q^{18}-285963 q^{17}+64472 q^{16}+373309 q^{15}+454649 q^{14}+164639 q^{13}-223339 q^{12}-461148 q^{11}-377316 q^{10}-18757 q^9+352647 q^8+507449 q^7+248392 q^6-161820 q^5-462289 q^4-434603 q^3-94324 q^2+309843 q+523615+309843 q^{-1} -94324 q^{-2} -434603 q^{-3} -462289 q^{-4} -161820 q^{-5} +248392 q^{-6} +507449 q^{-7} +352647 q^{-8} -18757 q^{-9} -377316 q^{-10} -461148 q^{-11} -223339 q^{-12} +164639 q^{-13} +454649 q^{-14} +373309 q^{-15} +64472 q^{-16} -285963 q^{-17} -422822 q^{-18} -270025 q^{-19} +62158 q^{-20} +360008 q^{-21} +358168 q^{-22} +140188 q^{-23} -167562 q^{-24} -340037 q^{-25} -281967 q^{-26} -37527 q^{-27} +233403 q^{-28} +296662 q^{-29} +181924 q^{-30} -49355 q^{-31} -223592 q^{-32} -245085 q^{-33} -102570 q^{-34} +106232 q^{-35} +199414 q^{-36} +172614 q^{-37} +33185 q^{-38} -106356 q^{-39} -169845 q^{-40} -114745 q^{-41} +15272 q^{-42} +99398 q^{-43} +122862 q^{-44} +62366 q^{-45} -23602 q^{-46} -88822 q^{-47} -85653 q^{-48} -23924 q^{-49} +29277 q^{-50} +64242 q^{-51} +50988 q^{-52} +12557 q^{-53} -31763 q^{-54} -45479 q^{-55} -25158 q^{-56} -1876 q^{-57} +23108 q^{-58} +27073 q^{-59} +16413 q^{-60} -5540 q^{-61} -17049 q^{-62} -13521 q^{-63} -7390 q^{-64} +4592 q^{-65} +9801 q^{-66} +9435 q^{-67} +1134 q^{-68} -4277 q^{-69} -4571 q^{-70} -4396 q^{-71} -256 q^{-72} +2306 q^{-73} +3656 q^{-74} +1081 q^{-75} -621 q^{-76} -911 q^{-77} -1592 q^{-78} -525 q^{-79} +263 q^{-80} +1079 q^{-81} +348 q^{-82} -32 q^{-83} -45 q^{-84} -401 q^{-85} -197 q^{-86} -34 q^{-87} +267 q^{-88} +57 q^{-89} -3 q^{-90} +32 q^{-91} -74 q^{-92} -40 q^{-93} -25 q^{-94} +59 q^{-95} +4 q^{-96} -10 q^{-97} +13 q^{-98} -10 q^{-99} -4 q^{-100} -5 q^{-101} +8 q^{-102} +2 q^{-103} -4 q^{-104} + q^{-105} </math> |

coloured_jones_7 = <math>-q^{140}+4 q^{139}-2 q^{138}-8 q^{137}+5 q^{136}+4 q^{135}+10 q^{134}-8 q^{133}-14 q^{132}+19 q^{131}-18 q^{130}-29 q^{129}+19 q^{128}+34 q^{127}+70 q^{126}-8 q^{125}-95 q^{124}-q^{123}-100 q^{122}-96 q^{121}+90 q^{120}+166 q^{119}+386 q^{118}+123 q^{117}-322 q^{116}-317 q^{115}-631 q^{114}-467 q^{113}+266 q^{112}+762 q^{111}+1670 q^{110}+1208 q^{109}-463 q^{108}-1515 q^{107}-3107 q^{106}-2772 q^{105}-291 q^{104}+2314 q^{103}+6161 q^{102}+6463 q^{101}+2175 q^{100}-3301 q^{99}-10657 q^{98}-12818 q^{97}-7278 q^{96}+2220 q^{95}+16744 q^{94}+24415 q^{93}+18496 q^{92}+2513 q^{91}-23614 q^{90}-41366 q^{89}-38652 q^{88}-16667 q^{87}+26513 q^{86}+64437 q^{85}+73119 q^{84}+46302 q^{83}-20551 q^{82}-89764 q^{81}-122265 q^{80}-99742 q^{79}-7071 q^{78}+109229 q^{77}+187356 q^{76}+184499 q^{75}+67310 q^{74}-109616 q^{73}-258467 q^{72}-303242 q^{71}-176407 q^{70}+71385 q^{69}+322592 q^{68}+452773 q^{67}+342359 q^{66}+25746 q^{65}-355028 q^{64}-618567 q^{63}-569164 q^{62}-200388 q^{61}+330574 q^{60}+776717 q^{59}+845393 q^{58}+462550 q^{57}-221392 q^{56}-896607 q^{55}-1150732 q^{54}-808577 q^{53}+11346 q^{52}+945398 q^{51}+1450627 q^{50}+1221252 q^{49}+306842 q^{48}-897550 q^{47}-1711298 q^{46}-1669310 q^{45}-719003 q^{44}+739059 q^{43}+1896713 q^{42}+2114554 q^{41}+1201843 q^{40}-472021 q^{39}-1986866 q^{38}-2519411 q^{37}-1716317 q^{36}+115361 q^{35}+1970962 q^{34}+2851981 q^{33}+2225279 q^{32}+302357 q^{31}-1857566 q^{30}-3094980 q^{29}-2692445 q^{28}-744990 q^{27}+1665046 q^{26}+3242566 q^{25}+3092927 q^{24}+1180258 q^{23}-1419298 q^{22}-3302976 q^{21}-3414284 q^{20}-1581554 q^{19}+1147652 q^{18}+3291635 q^{17}+3654409 q^{16}+1933029 q^{15}-871218 q^{14}-3226808 q^{13}-3821796 q^{12}-2230153 q^{11}+605219 q^{10}+3125712 q^9+3927949 q^8+2475790 q^7-354513 q^6-2998849 q^5-3985601 q^4-2679467 q^3+116463 q^2+2851088 q+4003929+2851088 q^{-1} +116463 q^{-2} -2679467 q^{-3} -3985601 q^{-4} -2998849 q^{-5} -354513 q^{-6} +2475790 q^{-7} +3927949 q^{-8} +3125712 q^{-9} +605219 q^{-10} -2230153 q^{-11} -3821796 q^{-12} -3226808 q^{-13} -871218 q^{-14} +1933029 q^{-15} +3654409 q^{-16} +3291635 q^{-17} +1147652 q^{-18} -1581554 q^{-19} -3414284 q^{-20} -3302976 q^{-21} -1419298 q^{-22} +1180258 q^{-23} +3092927 q^{-24} +3242566 q^{-25} +1665046 q^{-26} -744990 q^{-27} -2692445 q^{-28} -3094980 q^{-29} -1857566 q^{-30} +302357 q^{-31} +2225279 q^{-32} +2851981 q^{-33} +1970962 q^{-34} +115361 q^{-35} -1716317 q^{-36} -2519411 q^{-37} -1986866 q^{-38} -472021 q^{-39} +1201843 q^{-40} +2114554 q^{-41} +1896713 q^{-42} +739059 q^{-43} -719003 q^{-44} -1669310 q^{-45} -1711298 q^{-46} -897550 q^{-47} +306842 q^{-48} +1221252 q^{-49} +1450627 q^{-50} +945398 q^{-51} +11346 q^{-52} -808577 q^{-53} -1150732 q^{-54} -896607 q^{-55} -221392 q^{-56} +462550 q^{-57} +845393 q^{-58} +776717 q^{-59} +330574 q^{-60} -200388 q^{-61} -569164 q^{-62} -618567 q^{-63} -355028 q^{-64} +25746 q^{-65} +342359 q^{-66} +452773 q^{-67} +322592 q^{-68} +71385 q^{-69} -176407 q^{-70} -303242 q^{-71} -258467 q^{-72} -109616 q^{-73} +67310 q^{-74} +184499 q^{-75} +187356 q^{-76} +109229 q^{-77} -7071 q^{-78} -99742 q^{-79} -122265 q^{-80} -89764 q^{-81} -20551 q^{-82} +46302 q^{-83} +73119 q^{-84} +64437 q^{-85} +26513 q^{-86} -16667 q^{-87} -38652 q^{-88} -41366 q^{-89} -23614 q^{-90} +2513 q^{-91} +18496 q^{-92} +24415 q^{-93} +16744 q^{-94} +2220 q^{-95} -7278 q^{-96} -12818 q^{-97} -10657 q^{-98} -3301 q^{-99} +2175 q^{-100} +6463 q^{-101} +6161 q^{-102} +2314 q^{-103} -291 q^{-104} -2772 q^{-105} -3107 q^{-106} -1515 q^{-107} -463 q^{-108} +1208 q^{-109} +1670 q^{-110} +762 q^{-111} +266 q^{-112} -467 q^{-113} -631 q^{-114} -317 q^{-115} -322 q^{-116} +123 q^{-117} +386 q^{-118} +166 q^{-119} +90 q^{-120} -96 q^{-121} -100 q^{-122} - q^{-123} -95 q^{-124} -8 q^{-125} +70 q^{-126} +34 q^{-127} +19 q^{-128} -29 q^{-129} -18 q^{-130} +19 q^{-131} -14 q^{-132} -8 q^{-133} +10 q^{-134} +4 q^{-135} +5 q^{-136} -8 q^{-137} -2 q^{-138} +4 q^{-139} - q^{-140} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 45]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 6, 13, 5], X[10, 3, 11, 4], X[2, 11, 3, 12],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 45]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[12, 6, 13, 5], X[10, 3, 11, 4], X[2, 11, 3, 12],
X[20, 14, 1, 13], X[14, 7, 15, 8], X[6, 19, 7, 20],
X[20, 14, 1, 13], X[14, 7, 15, 8], X[6, 19, 7, 20],
X[18, 15, 19, 16], X[16, 10, 17, 9], X[8, 18, 9, 17]]</nowiki></pre></td></tr>
X[18, 15, 19, 16], X[16, 10, 17, 9], X[8, 18, 9, 17]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 45]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -7, 6, -10, 9, -3, 4, -2, 5, -6, 8, -9, 10,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 45]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 2, -7, 6, -10, 9, -3, 4, -2, 5, -6, 8, -9, 10,
-8, 7, -5]</nowiki></pre></td></tr>
-8, 7, -5]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 45]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 20, 18, 8, 6]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 45]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 45]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, -1, 2, -3, 2, -3, 4, -3, 4}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 20, 18, 8, 6]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 45]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 45]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, 2, -1, 2, -3, 2, -3, 4, -3, 4}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 45]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_45_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 45]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 45]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 21 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 45]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 45]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_45_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 45]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 2, 3, 2, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 45]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 21 2 3
31 - t + -- - -- - 21 t + 7 t - t
31 - t + -- - -- - 21 t + 7 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 45]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 - 2 z + z - z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 45]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 45]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 - 2 z + z - z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 45]], KnotSignature[Knot[10, 45]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{89, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 45]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 4 7 11 14 2 3 4 5
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 45]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 45]], KnotSignature[Knot[10, 45]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{89, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 45]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 4 7 11 14 2 3 4 5
15 - q + -- - -- + -- - -- - 14 q + 11 q - 7 q + 4 q - q
15 - q + -- - -- + -- - -- - 14 q + 11 q - 7 q + 4 q - q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 45]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 45]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -14 2 2 3 2 2 2 4 8
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 45]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 45]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 2 2 3 2 2 2 4 8
-3 - q + q + --- - --- + -- - -- + -- + 2 q - 2 q + 3 q -
-3 - q + q + --- - --- + -- - -- + -- + 2 q - 2 q + 3 q -
12 10 8 4 2
12 10 8 4 2
Line 147: Line 181:
10 12 14 16
10 12 14 16
2 q + 2 q + q - q</nowiki></pre></td></tr>
2 q + 2 q + q - q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 45]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 45]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4
2 2 2 z 3 z 2 2 4 2 4 2 z
2 2 2 z 3 z 2 2 4 2 4 2 z
-3 + -- + 2 a - 6 z - -- + ---- + 3 a z - a z - 3 z + ---- +
-3 + -- + 2 a - 6 z - -- + ---- + 3 a z - a z - 3 z + ---- +
Line 157: Line 195:
2 4 6
2 4 6
2 a z - z</nowiki></pre></td></tr>
2 a z - z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 45]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 45]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
2 2 z 5 z 3 2 3 z 12 z
2 2 z 5 z 3 2 3 z 12 z
-3 - -- - 2 a - -- - --- - 5 a z - a z + 18 z + ---- + ----- +
-3 - -- - 2 a - -- - --- - 5 a z - a z + 18 z + ---- + ----- +
Line 188: Line 230:
---- + ----- + 14 a z + 6 a z + 8 z + ---- + 4 a z + -- + a z
---- + ----- + 14 a z + 6 a z + 8 z + ---- + 4 a z + -- + a z
3 a 2 a
3 a 2 a
a a</nowiki></pre></td></tr>
a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 45]], Vassiliev[3][Knot[10, 45]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 45]], Vassiliev[3][Knot[10, 45]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 45]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8 1 3 1 4 3 7 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 45]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>8 1 3 1 4 3 7 4
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 205: Line 255:
7 4 9 4 11 5
7 4 9 4 11 5
q t + 3 q t + q t</nowiki></pre></td></tr>
q t + 3 q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 45], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 4 2 13 24 51 61 18 116 98 55
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 45], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 4 2 13 24 51 61 18 116 98 55
207 + q - --- + --- + --- - --- + -- - -- - -- + --- - -- - -- +
207 + q - --- + --- + --- - --- + -- - -- - -- + --- - -- - -- +
14 13 12 11 9 8 7 6 5 4
14 13 12 11 9 8 7 6 5 4
Line 219: Line 273:
7 8 9 11 12 13 14 15
7 8 9 11 12 13 14 15
18 q - 61 q + 51 q - 24 q + 13 q + 2 q - 4 q + q</nowiki></pre></td></tr>
18 q - 61 q + 51 q - 24 q + 13 q + 2 q - 4 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:04, 1 September 2005

10 44.gif

10_44

10 46.gif

10_46

10 45.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 45's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 45 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X12,6,13,5 X10,3,11,4 X2,11,3,12 X20,14,1,13 X14,7,15,8 X6,19,7,20 X18,15,19,16 X16,10,17,9 X8,18,9,17
Gauss code 1, -4, 3, -1, 2, -7, 6, -10, 9, -3, 4, -2, 5, -6, 8, -9, 10, -8, 7, -5
Dowker-Thistlethwaite code 4 10 12 14 16 2 20 18 8 6
Conway Notation [21111112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

10 45 ML.gif 10 45 AP.gif
[{2, 13}, {1, 8}, {12, 3}, {13, 11}, {9, 12}, {7, 2}, {8, 4}, {3, 6}, {5, 7}, {6, 10}, {4, 9}, {10, 5}, {11, 1}]

[edit Notes on presentations of 10 45]


Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 13.7161
A-Polynomial See Data:10 45/A-polynomial

[edit Notes for 10 45's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 45's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 89, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 45. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         3 3
7        41 -3
5       73  4
3      74   -3
1     87    1
-1    78     1
-3   47      -3
-5  37       4
-7 14        -3
-9 3         3
-111          -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials