10 45
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 45's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X12,6,13,5 X10,3,11,4 X2,11,3,12 X20,14,1,13 X14,7,15,8 X6,19,7,20 X18,15,19,16 X16,10,17,9 X8,18,9,17 |
| Gauss code | 1, -4, 3, -1, 2, -7, 6, -10, 9, -3, 4, -2, 5, -6, 8, -9, 10, -8, 7, -5 |
| Dowker-Thistlethwaite code | 4 10 12 14 16 2 20 18 8 6 |
| Conway Notation | [21111112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
|
![]() [{2, 13}, {1, 8}, {12, 3}, {13, 11}, {9, 12}, {7, 2}, {8, 4}, {3, 6}, {5, 7}, {6, 10}, {4, 9}, {10, 5}, {11, 1}] |
[edit Notes on presentations of 10 45]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 45"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X12,6,13,5 X10,3,11,4 X2,11,3,12 X20,14,1,13 X14,7,15,8 X6,19,7,20 X18,15,19,16 X16,10,17,9 X8,18,9,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, -7, 6, -10, 9, -3, 4, -2, 5, -6, 8, -9, 10, -8, 7, -5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 14 16 2 20 18 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[21111112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{-1,2,-1,2,-3,2,-3,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 13}, {1, 8}, {12, 3}, {13, 11}, {9, 12}, {7, 2}, {8, 4}, {3, 6}, {5, 7}, {6, 10}, {4, 9}, {10, 5}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+7 t^2-21 t+31-21 t^{-1} +7 t^{-2} - t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+z^4-2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 89, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-7 q^3+11 q^2-14 q+15-14 q^{-1} +11 q^{-2} -7 q^{-3} +4 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{155}+3 q^{153}+q^{151}-7 q^{149}-2 q^{147}+2 q^{145}+8 q^{143}+15 q^{141}+4 q^{139}-33 q^{137}-43 q^{135}-q^{133}+58 q^{131}+95 q^{129}+41 q^{127}-98 q^{125}-222 q^{123}-135 q^{121}+165 q^{119}+406 q^{117}+333 q^{115}-139 q^{113}-712 q^{111}-764 q^{109}+23 q^{107}+1089 q^{105}+1418 q^{103}+432 q^{101}-1404 q^{99}-2455 q^{97}-1334 q^{95}+1492 q^{93}+3692 q^{91}+2874 q^{89}-1004 q^{87}-4953 q^{85}-5068 q^{83}-319 q^{81}+5824 q^{79}+7722 q^{77}+2646 q^{75}-5867 q^{73}-10372 q^{71}-5922 q^{69}+4731 q^{67}+12493 q^{65}+9707 q^{63}-2337 q^{61}-13500 q^{59}-13387 q^{57}-1098 q^{55}+13073 q^{53}+16317 q^{51}+5018 q^{49}-11250 q^{47}-17911 q^{45}-8741 q^{43}+8263 q^{41}+17990 q^{39}+11748 q^{37}-4766 q^{35}-16633 q^{33}-13554 q^{31}+1176 q^{29}+14178 q^{27}+14228 q^{25}+2011 q^{23}-11137 q^{21}-13854 q^{19}-4629 q^{17}+7850 q^{15}+12833 q^{13}+6722 q^{11}-4616 q^9-11487 q^7-8436 q^5+1525 q^3+9988 q+9988 q^{-1} +1525 q^{-3} -8436 q^{-5} -11487 q^{-7} -4616 q^{-9} +6722 q^{-11} +12833 q^{-13} +7850 q^{-15} -4629 q^{-17} -13854 q^{-19} -11137 q^{-21} +2011 q^{-23} +14228 q^{-25} +14178 q^{-27} +1176 q^{-29} -13554 q^{-31} -16633 q^{-33} -4766 q^{-35} +11748 q^{-37} +17990 q^{-39} +8263 q^{-41} -8741 q^{-43} -17911 q^{-45} -11250 q^{-47} +5018 q^{-49} +16317 q^{-51} +13073 q^{-53} -1098 q^{-55} -13387 q^{-57} -13500 q^{-59} -2337 q^{-61} +9707 q^{-63} +12493 q^{-65} +4731 q^{-67} -5922 q^{-69} -10372 q^{-71} -5867 q^{-73} +2646 q^{-75} +7722 q^{-77} +5824 q^{-79} -319 q^{-81} -5068 q^{-83} -4953 q^{-85} -1004 q^{-87} +2874 q^{-89} +3692 q^{-91} +1492 q^{-93} -1334 q^{-95} -2455 q^{-97} -1404 q^{-99} +432 q^{-101} +1418 q^{-103} +1089 q^{-105} +23 q^{-107} -764 q^{-109} -712 q^{-111} -139 q^{-113} +333 q^{-115} +406 q^{-117} +165 q^{-119} -135 q^{-121} -222 q^{-123} -98 q^{-125} +41 q^{-127} +95 q^{-129} +58 q^{-131} - q^{-133} -43 q^{-135} -33 q^{-137} +4 q^{-139} +15 q^{-141} +8 q^{-143} +2 q^{-145} -2 q^{-147} -7 q^{-149} + q^{-151} +3 q^{-153} - q^{-155} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{14}+2 q^{12}-2 q^{10}+3 q^8-2 q^4+2 q^2-3+2 q^{-2} -2 q^{-4} +3 q^{-8} -2 q^{-10} +2 q^{-12} + q^{-14} - q^{-16} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}-6 q^{42}+20 q^{40}-50 q^{38}+105 q^{36}-198 q^{34}+336 q^{32}-524 q^{30}+755 q^{28}-1002 q^{26}+1248 q^{24}-1436 q^{22}+1518 q^{20}-1454 q^{18}+1210 q^{16}-784 q^{14}+187 q^{12}+522 q^{10}-1274 q^8+1984 q^6-2565 q^4+2950 q^2-3078+2950 q^{-2} -2565 q^{-4} +1984 q^{-6} -1274 q^{-8} +522 q^{-10} +187 q^{-12} -784 q^{-14} +1210 q^{-16} -1454 q^{-18} +1518 q^{-20} -1436 q^{-22} +1248 q^{-24} -1002 q^{-26} +755 q^{-28} -524 q^{-30} +336 q^{-32} -198 q^{-34} +105 q^{-36} -50 q^{-38} +20 q^{-40} -6 q^{-42} + q^{-44} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-q^{40}-3 q^{38}+6 q^{34}+3 q^{32}-10 q^{30}-2 q^{28}+15 q^{26}+4 q^{24}-19 q^{22}-5 q^{20}+21 q^{18}+4 q^{16}-24 q^{14}+20 q^{10}-6 q^8-12 q^6+8 q^4+6 q^2-6+6 q^{-2} +8 q^{-4} -12 q^{-6} -6 q^{-8} +20 q^{-10} -24 q^{-14} +4 q^{-16} +21 q^{-18} -5 q^{-20} -19 q^{-22} +4 q^{-24} +15 q^{-26} -2 q^{-28} -10 q^{-30} +3 q^{-32} +6 q^{-34} -3 q^{-38} - q^{-40} + q^{-42} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}-3 q^{32}+q^{30}+6 q^{28}-12 q^{26}+5 q^{24}+16 q^{22}-23 q^{20}+6 q^{18}+26 q^{16}-30 q^{14}+27 q^{10}-23 q^8-7 q^6+18 q^4-q^2-8- q^{-2} +18 q^{-4} -7 q^{-6} -23 q^{-8} +27 q^{-10} -30 q^{-14} +26 q^{-16} +6 q^{-18} -23 q^{-20} +16 q^{-22} +5 q^{-24} -12 q^{-26} +6 q^{-28} + q^{-30} -3 q^{-32} + q^{-34} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}+q^{19}+2 q^{15}-2 q^{13}+4 q^{11}-q^9+2 q^7-2 q^5+q^3-2 q-2 q^{-1} + q^{-3} -2 q^{-5} +2 q^{-7} - q^{-9} +4 q^{-11} -2 q^{-13} +2 q^{-15} + q^{-19} - q^{-21} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}+3 q^{32}-7 q^{30}+12 q^{28}-18 q^{26}+25 q^{24}-30 q^{22}+35 q^{20}-34 q^{18}+32 q^{16}-22 q^{14}+10 q^{12}+7 q^{10}-25 q^8+41 q^6-56 q^4+65 q^2-70+65 q^{-2} -56 q^{-4} +41 q^{-6} -25 q^{-8} +7 q^{-10} +10 q^{-12} -22 q^{-14} +32 q^{-16} -34 q^{-18} +35 q^{-20} -30 q^{-22} +25 q^{-24} -18 q^{-26} +12 q^{-28} -7 q^{-30} +3 q^{-32} - q^{-34} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-3 q^{52}-3 q^{50}+4 q^{48}+9 q^{46}-q^{44}-15 q^{42}-9 q^{40}+17 q^{38}+23 q^{36}-6 q^{34}-32 q^{32}-11 q^{30}+30 q^{28}+30 q^{26}-16 q^{24}-38 q^{22}-3 q^{20}+34 q^{18}+16 q^{16}-25 q^{14}-23 q^{12}+14 q^{10}+24 q^8-7 q^6-23 q^4+3 q^2+25+3 q^{-2} -23 q^{-4} -7 q^{-6} +24 q^{-8} +14 q^{-10} -23 q^{-12} -25 q^{-14} +16 q^{-16} +34 q^{-18} -3 q^{-20} -38 q^{-22} -16 q^{-24} +30 q^{-26} +30 q^{-28} -11 q^{-30} -32 q^{-32} -6 q^{-34} +23 q^{-36} +17 q^{-38} -9 q^{-40} -15 q^{-42} - q^{-44} +9 q^{-46} +4 q^{-48} -3 q^{-50} -3 q^{-52} + q^{-56} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 45"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+7 t^2-21 t+31-21 t^{-1} +7 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+z^4-2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 89, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-7 q^3+11 q^2-14 q+15-14 q^{-1} +11 q^{-2} -7 q^{-3} +4 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 45"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+7 t^2-21 t+31-21 t^{-1} +7 t^{-2} - t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-7 q^3+11 q^2-14 q+15-14 q^{-1} +11 q^{-2} -7 q^{-3} +4 q^{-4} - q^{-5} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 45. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-4 q^{14}+2 q^{13}+13 q^{12}-24 q^{11}+51 q^9-61 q^8-18 q^7+116 q^6-98 q^5-55 q^4+180 q^3-112 q^2-94 q+207-94 q^{-1} -112 q^{-2} +180 q^{-3} -55 q^{-4} -98 q^{-5} +116 q^{-6} -18 q^{-7} -61 q^{-8} +51 q^{-9} -24 q^{-11} +13 q^{-12} +2 q^{-13} -4 q^{-14} + q^{-15} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{30}+4 q^{29}-2 q^{28}-8 q^{27}+23 q^{25}+6 q^{24}-53 q^{23}-16 q^{22}+90 q^{21}+54 q^{20}-152 q^{19}-110 q^{18}+213 q^{17}+214 q^{16}-288 q^{15}-341 q^{14}+333 q^{13}+518 q^{12}-369 q^{11}-699 q^{10}+359 q^9+893 q^8-323 q^7-1063 q^6+254 q^5+1197 q^4-160 q^3-1285 q^2+55 q+1315+55 q^{-1} -1285 q^{-2} -160 q^{-3} +1197 q^{-4} +254 q^{-5} -1063 q^{-6} -323 q^{-7} +893 q^{-8} +359 q^{-9} -699 q^{-10} -369 q^{-11} +518 q^{-12} +333 q^{-13} -341 q^{-14} -288 q^{-15} +214 q^{-16} +213 q^{-17} -110 q^{-18} -152 q^{-19} +54 q^{-20} +90 q^{-21} -16 q^{-22} -53 q^{-23} +6 q^{-24} +23 q^{-25} -8 q^{-27} -2 q^{-28} +4 q^{-29} - q^{-30} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}-4 q^{49}+2 q^{48}+8 q^{47}-5 q^{46}+q^{45}-29 q^{44}+12 q^{43}+54 q^{42}-9 q^{41}-146 q^{39}+8 q^{38}+212 q^{37}+61 q^{36}+25 q^{35}-496 q^{34}-136 q^{33}+524 q^{32}+400 q^{31}+261 q^{30}-1204 q^{29}-729 q^{28}+822 q^{27}+1213 q^{26}+1108 q^{25}-2114 q^{24}-2056 q^{23}+620 q^{22}+2366 q^{21}+2921 q^{20}-2686 q^{19}-3976 q^{18}-516 q^{17}+3306 q^{16}+5506 q^{15}-2414 q^{14}-5838 q^{13}-2466 q^{12}+3503 q^{11}+8113 q^{10}-1310 q^9-6976 q^8-4591 q^7+2878 q^6+9950 q^5+200 q^4-7103 q^3-6257 q^2+1686 q+10601+1686 q^{-1} -6257 q^{-2} -7103 q^{-3} +200 q^{-4} +9950 q^{-5} +2878 q^{-6} -4591 q^{-7} -6976 q^{-8} -1310 q^{-9} +8113 q^{-10} +3503 q^{-11} -2466 q^{-12} -5838 q^{-13} -2414 q^{-14} +5506 q^{-15} +3306 q^{-16} -516 q^{-17} -3976 q^{-18} -2686 q^{-19} +2921 q^{-20} +2366 q^{-21} +620 q^{-22} -2056 q^{-23} -2114 q^{-24} +1108 q^{-25} +1213 q^{-26} +822 q^{-27} -729 q^{-28} -1204 q^{-29} +261 q^{-30} +400 q^{-31} +524 q^{-32} -136 q^{-33} -496 q^{-34} +25 q^{-35} +61 q^{-36} +212 q^{-37} +8 q^{-38} -146 q^{-39} -9 q^{-41} +54 q^{-42} +12 q^{-43} -29 q^{-44} + q^{-45} -5 q^{-46} +8 q^{-47} +2 q^{-48} -4 q^{-49} + q^{-50} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{75}+4 q^{74}-2 q^{73}-8 q^{72}+5 q^{71}+4 q^{70}+5 q^{69}+11 q^{68}-13 q^{67}-45 q^{66}-5 q^{65}+46 q^{64}+64 q^{63}+48 q^{62}-67 q^{61}-184 q^{60}-129 q^{59}+133 q^{58}+364 q^{57}+289 q^{56}-140 q^{55}-656 q^{54}-702 q^{53}+81 q^{52}+1151 q^{51}+1355 q^{50}+189 q^{49}-1642 q^{48}-2538 q^{47}-970 q^{46}+2272 q^{45}+4181 q^{44}+2389 q^{43}-2460 q^{42}-6416 q^{41}-4919 q^{40}+2157 q^{39}+8930 q^{38}+8532 q^{37}-562 q^{36}-11492 q^{35}-13432 q^{34}-2348 q^{33}+13380 q^{32}+19185 q^{31}+7200 q^{30}-14278 q^{29}-25476 q^{28}-13511 q^{27}+13493 q^{26}+31474 q^{25}+21371 q^{24}-11034 q^{23}-36775 q^{22}-29779 q^{21}+6832 q^{20}+40644 q^{19}+38375 q^{18}-1307 q^{17}-43017 q^{16}-46293 q^{15}-5035 q^{14}+43723 q^{13}+53105 q^{12}+11695 q^{11}-42967 q^{10}-58510 q^9-18183 q^8+41006 q^7+62330 q^6+24174 q^5-37984 q^4-64621 q^3-29521 q^2+34135 q+65381+34135 q^{-1} -29521 q^{-2} -64621 q^{-3} -37984 q^{-4} +24174 q^{-5} +62330 q^{-6} +41006 q^{-7} -18183 q^{-8} -58510 q^{-9} -42967 q^{-10} +11695 q^{-11} +53105 q^{-12} +43723 q^{-13} -5035 q^{-14} -46293 q^{-15} -43017 q^{-16} -1307 q^{-17} +38375 q^{-18} +40644 q^{-19} +6832 q^{-20} -29779 q^{-21} -36775 q^{-22} -11034 q^{-23} +21371 q^{-24} +31474 q^{-25} +13493 q^{-26} -13511 q^{-27} -25476 q^{-28} -14278 q^{-29} +7200 q^{-30} +19185 q^{-31} +13380 q^{-32} -2348 q^{-33} -13432 q^{-34} -11492 q^{-35} -562 q^{-36} +8532 q^{-37} +8930 q^{-38} +2157 q^{-39} -4919 q^{-40} -6416 q^{-41} -2460 q^{-42} +2389 q^{-43} +4181 q^{-44} +2272 q^{-45} -970 q^{-46} -2538 q^{-47} -1642 q^{-48} +189 q^{-49} +1355 q^{-50} +1151 q^{-51} +81 q^{-52} -702 q^{-53} -656 q^{-54} -140 q^{-55} +289 q^{-56} +364 q^{-57} +133 q^{-58} -129 q^{-59} -184 q^{-60} -67 q^{-61} +48 q^{-62} +64 q^{-63} +46 q^{-64} -5 q^{-65} -45 q^{-66} -13 q^{-67} +11 q^{-68} +5 q^{-69} +4 q^{-70} +5 q^{-71} -8 q^{-72} -2 q^{-73} +4 q^{-74} - q^{-75} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{105}-4 q^{104}+2 q^{103}+8 q^{102}-5 q^{101}-4 q^{100}-10 q^{99}+13 q^{98}-10 q^{97}+4 q^{96}+59 q^{95}-25 q^{94}-40 q^{93}-74 q^{92}+32 q^{91}-3 q^{90}+57 q^{89}+267 q^{88}-34 q^{87}-197 q^{86}-401 q^{85}-45 q^{84}-32 q^{83}+348 q^{82}+1079 q^{81}+263 q^{80}-525 q^{79}-1592 q^{78}-911 q^{77}-621 q^{76}+1081 q^{75}+3656 q^{74}+2306 q^{73}-256 q^{72}-4396 q^{71}-4571 q^{70}-4277 q^{69}+1134 q^{68}+9435 q^{67}+9801 q^{66}+4592 q^{65}-7390 q^{64}-13521 q^{63}-17049 q^{62}-5540 q^{61}+16413 q^{60}+27073 q^{59}+23108 q^{58}-1876 q^{57}-25158 q^{56}-45479 q^{55}-31763 q^{54}+12557 q^{53}+50988 q^{52}+64242 q^{51}+29277 q^{50}-23924 q^{49}-85653 q^{48}-88822 q^{47}-23602 q^{46}+62366 q^{45}+122862 q^{44}+99398 q^{43}+15272 q^{42}-114745 q^{41}-169845 q^{40}-106356 q^{39}+33185 q^{38}+172614 q^{37}+199414 q^{36}+106232 q^{35}-102570 q^{34}-245085 q^{33}-223592 q^{32}-49355 q^{31}+181924 q^{30}+296662 q^{29}+233403 q^{28}-37527 q^{27}-281967 q^{26}-340037 q^{25}-167562 q^{24}+140188 q^{23}+358168 q^{22}+360008 q^{21}+62158 q^{20}-270025 q^{19}-422822 q^{18}-285963 q^{17}+64472 q^{16}+373309 q^{15}+454649 q^{14}+164639 q^{13}-223339 q^{12}-461148 q^{11}-377316 q^{10}-18757 q^9+352647 q^8+507449 q^7+248392 q^6-161820 q^5-462289 q^4-434603 q^3-94324 q^2+309843 q+523615+309843 q^{-1} -94324 q^{-2} -434603 q^{-3} -462289 q^{-4} -161820 q^{-5} +248392 q^{-6} +507449 q^{-7} +352647 q^{-8} -18757 q^{-9} -377316 q^{-10} -461148 q^{-11} -223339 q^{-12} +164639 q^{-13} +454649 q^{-14} +373309 q^{-15} +64472 q^{-16} -285963 q^{-17} -422822 q^{-18} -270025 q^{-19} +62158 q^{-20} +360008 q^{-21} +358168 q^{-22} +140188 q^{-23} -167562 q^{-24} -340037 q^{-25} -281967 q^{-26} -37527 q^{-27} +233403 q^{-28} +296662 q^{-29} +181924 q^{-30} -49355 q^{-31} -223592 q^{-32} -245085 q^{-33} -102570 q^{-34} +106232 q^{-35} +199414 q^{-36} +172614 q^{-37} +33185 q^{-38} -106356 q^{-39} -169845 q^{-40} -114745 q^{-41} +15272 q^{-42} +99398 q^{-43} +122862 q^{-44} +62366 q^{-45} -23602 q^{-46} -88822 q^{-47} -85653 q^{-48} -23924 q^{-49} +29277 q^{-50} +64242 q^{-51} +50988 q^{-52} +12557 q^{-53} -31763 q^{-54} -45479 q^{-55} -25158 q^{-56} -1876 q^{-57} +23108 q^{-58} +27073 q^{-59} +16413 q^{-60} -5540 q^{-61} -17049 q^{-62} -13521 q^{-63} -7390 q^{-64} +4592 q^{-65} +9801 q^{-66} +9435 q^{-67} +1134 q^{-68} -4277 q^{-69} -4571 q^{-70} -4396 q^{-71} -256 q^{-72} +2306 q^{-73} +3656 q^{-74} +1081 q^{-75} -621 q^{-76} -911 q^{-77} -1592 q^{-78} -525 q^{-79} +263 q^{-80} +1079 q^{-81} +348 q^{-82} -32 q^{-83} -45 q^{-84} -401 q^{-85} -197 q^{-86} -34 q^{-87} +267 q^{-88} +57 q^{-89} -3 q^{-90} +32 q^{-91} -74 q^{-92} -40 q^{-93} -25 q^{-94} +59 q^{-95} +4 q^{-96} -10 q^{-97} +13 q^{-98} -10 q^{-99} -4 q^{-100} -5 q^{-101} +8 q^{-102} +2 q^{-103} -4 q^{-104} + q^{-105} } |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{140}+4 q^{139}-2 q^{138}-8 q^{137}+5 q^{136}+4 q^{135}+10 q^{134}-8 q^{133}-14 q^{132}+19 q^{131}-18 q^{130}-29 q^{129}+19 q^{128}+34 q^{127}+70 q^{126}-8 q^{125}-95 q^{124}-q^{123}-100 q^{122}-96 q^{121}+90 q^{120}+166 q^{119}+386 q^{118}+123 q^{117}-322 q^{116}-317 q^{115}-631 q^{114}-467 q^{113}+266 q^{112}+762 q^{111}+1670 q^{110}+1208 q^{109}-463 q^{108}-1515 q^{107}-3107 q^{106}-2772 q^{105}-291 q^{104}+2314 q^{103}+6161 q^{102}+6463 q^{101}+2175 q^{100}-3301 q^{99}-10657 q^{98}-12818 q^{97}-7278 q^{96}+2220 q^{95}+16744 q^{94}+24415 q^{93}+18496 q^{92}+2513 q^{91}-23614 q^{90}-41366 q^{89}-38652 q^{88}-16667 q^{87}+26513 q^{86}+64437 q^{85}+73119 q^{84}+46302 q^{83}-20551 q^{82}-89764 q^{81}-122265 q^{80}-99742 q^{79}-7071 q^{78}+109229 q^{77}+187356 q^{76}+184499 q^{75}+67310 q^{74}-109616 q^{73}-258467 q^{72}-303242 q^{71}-176407 q^{70}+71385 q^{69}+322592 q^{68}+452773 q^{67}+342359 q^{66}+25746 q^{65}-355028 q^{64}-618567 q^{63}-569164 q^{62}-200388 q^{61}+330574 q^{60}+776717 q^{59}+845393 q^{58}+462550 q^{57}-221392 q^{56}-896607 q^{55}-1150732 q^{54}-808577 q^{53}+11346 q^{52}+945398 q^{51}+1450627 q^{50}+1221252 q^{49}+306842 q^{48}-897550 q^{47}-1711298 q^{46}-1669310 q^{45}-719003 q^{44}+739059 q^{43}+1896713 q^{42}+2114554 q^{41}+1201843 q^{40}-472021 q^{39}-1986866 q^{38}-2519411 q^{37}-1716317 q^{36}+115361 q^{35}+1970962 q^{34}+2851981 q^{33}+2225279 q^{32}+302357 q^{31}-1857566 q^{30}-3094980 q^{29}-2692445 q^{28}-744990 q^{27}+1665046 q^{26}+3242566 q^{25}+3092927 q^{24}+1180258 q^{23}-1419298 q^{22}-3302976 q^{21}-3414284 q^{20}-1581554 q^{19}+1147652 q^{18}+3291635 q^{17}+3654409 q^{16}+1933029 q^{15}-871218 q^{14}-3226808 q^{13}-3821796 q^{12}-2230153 q^{11}+605219 q^{10}+3125712 q^9+3927949 q^8+2475790 q^7-354513 q^6-2998849 q^5-3985601 q^4-2679467 q^3+116463 q^2+2851088 q+4003929+2851088 q^{-1} +116463 q^{-2} -2679467 q^{-3} -3985601 q^{-4} -2998849 q^{-5} -354513 q^{-6} +2475790 q^{-7} +3927949 q^{-8} +3125712 q^{-9} +605219 q^{-10} -2230153 q^{-11} -3821796 q^{-12} -3226808 q^{-13} -871218 q^{-14} +1933029 q^{-15} +3654409 q^{-16} +3291635 q^{-17} +1147652 q^{-18} -1581554 q^{-19} -3414284 q^{-20} -3302976 q^{-21} -1419298 q^{-22} +1180258 q^{-23} +3092927 q^{-24} +3242566 q^{-25} +1665046 q^{-26} -744990 q^{-27} -2692445 q^{-28} -3094980 q^{-29} -1857566 q^{-30} +302357 q^{-31} +2225279 q^{-32} +2851981 q^{-33} +1970962 q^{-34} +115361 q^{-35} -1716317 q^{-36} -2519411 q^{-37} -1986866 q^{-38} -472021 q^{-39} +1201843 q^{-40} +2114554 q^{-41} +1896713 q^{-42} +739059 q^{-43} -719003 q^{-44} -1669310 q^{-45} -1711298 q^{-46} -897550 q^{-47} +306842 q^{-48} +1221252 q^{-49} +1450627 q^{-50} +945398 q^{-51} +11346 q^{-52} -808577 q^{-53} -1150732 q^{-54} -896607 q^{-55} -221392 q^{-56} +462550 q^{-57} +845393 q^{-58} +776717 q^{-59} +330574 q^{-60} -200388 q^{-61} -569164 q^{-62} -618567 q^{-63} -355028 q^{-64} +25746 q^{-65} +342359 q^{-66} +452773 q^{-67} +322592 q^{-68} +71385 q^{-69} -176407 q^{-70} -303242 q^{-71} -258467 q^{-72} -109616 q^{-73} +67310 q^{-74} +184499 q^{-75} +187356 q^{-76} +109229 q^{-77} -7071 q^{-78} -99742 q^{-79} -122265 q^{-80} -89764 q^{-81} -20551 q^{-82} +46302 q^{-83} +73119 q^{-84} +64437 q^{-85} +26513 q^{-86} -16667 q^{-87} -38652 q^{-88} -41366 q^{-89} -23614 q^{-90} +2513 q^{-91} +18496 q^{-92} +24415 q^{-93} +16744 q^{-94} +2220 q^{-95} -7278 q^{-96} -12818 q^{-97} -10657 q^{-98} -3301 q^{-99} +2175 q^{-100} +6463 q^{-101} +6161 q^{-102} +2314 q^{-103} -291 q^{-104} -2772 q^{-105} -3107 q^{-106} -1515 q^{-107} -463 q^{-108} +1208 q^{-109} +1670 q^{-110} +762 q^{-111} +266 q^{-112} -467 q^{-113} -631 q^{-114} -317 q^{-115} -322 q^{-116} +123 q^{-117} +386 q^{-118} +166 q^{-119} +90 q^{-120} -96 q^{-121} -100 q^{-122} - q^{-123} -95 q^{-124} -8 q^{-125} +70 q^{-126} +34 q^{-127} +19 q^{-128} -29 q^{-129} -18 q^{-130} +19 q^{-131} -14 q^{-132} -8 q^{-133} +10 q^{-134} +4 q^{-135} +5 q^{-136} -8 q^{-137} -2 q^{-138} +4 q^{-139} - q^{-140} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




