10 54: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 54 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,7,-3,4,-10,2,-4,3,-5,9,-8,6,-7,5,-9,8/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=54|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,7,-3,4,-10,2,-4,3,-5,9,-8,6,-7,5,-9,8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_12]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_12]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 72: | Line 40: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{17}-2 q^{16}+q^{15}+3 q^{14}-7 q^{13}+5 q^{12}+4 q^{11}-15 q^{10}+14 q^9+4 q^8-26 q^7+23 q^6+9 q^5-35 q^4+23 q^3+18 q^2-38 q+16+24 q^{-1} -33 q^{-2} +5 q^{-3} +24 q^{-4} -22 q^{-5} -3 q^{-6} +17 q^{-7} -9 q^{-8} -5 q^{-9} +7 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math> | |
|||
coloured_jones_3 = <math>-q^{33}+2 q^{32}-q^{31}-2 q^{29}+4 q^{28}-q^{27}-q^{26}-2 q^{25}+2 q^{24}+q^{23}+5 q^{22}-5 q^{21}-11 q^{20}+2 q^{19}+27 q^{18}-q^{17}-44 q^{16}-5 q^{15}+56 q^{14}+20 q^{13}-70 q^{12}-30 q^{11}+66 q^{10}+49 q^9-65 q^8-50 q^7+42 q^6+65 q^5-34 q^4-55 q^3+5 q^2+64 q+3-48 q^{-1} -28 q^{-2} +50 q^{-3} +35 q^{-4} -34 q^{-5} -50 q^{-6} +23 q^{-7} +53 q^{-8} -6 q^{-9} -54 q^{-10} -9 q^{-11} +47 q^{-12} +19 q^{-13} -32 q^{-14} -28 q^{-15} +21 q^{-16} +24 q^{-17} -6 q^{-18} -20 q^{-19} +11 q^{-21} +4 q^{-22} -6 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{17}-2 q^{16}+q^{15}+3 q^{14}-7 q^{13}+5 q^{12}+4 q^{11}-15 q^{10}+14 q^9+4 q^8-26 q^7+23 q^6+9 q^5-35 q^4+23 q^3+18 q^2-38 q+16+24 q^{-1} -33 q^{-2} +5 q^{-3} +24 q^{-4} -22 q^{-5} -3 q^{-6} +17 q^{-7} -9 q^{-8} -5 q^{-9} +7 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math>|J3=<math>-q^{33}+2 q^{32}-q^{31}-2 q^{29}+4 q^{28}-q^{27}-q^{26}-2 q^{25}+2 q^{24}+q^{23}+5 q^{22}-5 q^{21}-11 q^{20}+2 q^{19}+27 q^{18}-q^{17}-44 q^{16}-5 q^{15}+56 q^{14}+20 q^{13}-70 q^{12}-30 q^{11}+66 q^{10}+49 q^9-65 q^8-50 q^7+42 q^6+65 q^5-34 q^4-55 q^3+5 q^2+64 q+3-48 q^{-1} -28 q^{-2} +50 q^{-3} +35 q^{-4} -34 q^{-5} -50 q^{-6} +23 q^{-7} +53 q^{-8} -6 q^{-9} -54 q^{-10} -9 q^{-11} +47 q^{-12} +19 q^{-13} -32 q^{-14} -28 q^{-15} +21 q^{-16} +24 q^{-17} -6 q^{-18} -20 q^{-19} +11 q^{-21} +4 q^{-22} -6 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math>|J4=<math>q^{54}-2 q^{53}+q^{52}-q^{50}+5 q^{49}-8 q^{48}+4 q^{47}-2 q^{45}+13 q^{44}-22 q^{43}+7 q^{42}+3 q^{41}+5 q^{40}+28 q^{39}-55 q^{38}-6 q^{37}+13 q^{36}+46 q^{35}+64 q^{34}-125 q^{33}-68 q^{32}+19 q^{31}+145 q^{30}+161 q^{29}-213 q^{28}-210 q^{27}-32 q^{26}+275 q^{25}+344 q^{24}-245 q^{23}-376 q^{22}-167 q^{21}+326 q^{20}+537 q^{19}-171 q^{18}-444 q^{17}-315 q^{16}+252 q^{15}+623 q^{14}-63 q^{13}-377 q^{12}-373 q^{11}+120 q^{10}+583 q^9+6 q^8-251 q^7-347 q^6+q^5+487 q^4+41 q^3-122 q^2-295 q-102+371 q^{-1} +72 q^{-2} +9 q^{-3} -225 q^{-4} -190 q^{-5} +225 q^{-6} +70 q^{-7} +133 q^{-8} -108 q^{-9} -222 q^{-10} +67 q^{-11} +2 q^{-12} +188 q^{-13} +31 q^{-14} -153 q^{-15} -28 q^{-16} -104 q^{-17} +131 q^{-18} +110 q^{-19} -29 q^{-20} -15 q^{-21} -150 q^{-22} +20 q^{-23} +77 q^{-24} +43 q^{-25} +48 q^{-26} -100 q^{-27} -37 q^{-28} +5 q^{-29} +28 q^{-30} +64 q^{-31} -27 q^{-32} -22 q^{-33} -21 q^{-34} -4 q^{-35} +32 q^{-36} + q^{-37} -9 q^{-39} -8 q^{-40} +7 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math>|J5=<math>-q^{80}+2 q^{79}-q^{78}+q^{76}-2 q^{75}-q^{74}+5 q^{73}-3 q^{72}-2 q^{71}+5 q^{70}-4 q^{69}-q^{68}+9 q^{67}-9 q^{66}-9 q^{65}+9 q^{64}+7 q^{63}+8 q^{62}+7 q^{61}-29 q^{60}-40 q^{59}+13 q^{58}+57 q^{57}+66 q^{56}-119 q^{54}-145 q^{53}+7 q^{52}+211 q^{51}+264 q^{50}+23 q^{49}-356 q^{48}-465 q^{47}-70 q^{46}+520 q^{45}+746 q^{44}+213 q^{43}-709 q^{42}-1116 q^{41}-432 q^{40}+849 q^{39}+1524 q^{38}+771 q^{37}-892 q^{36}-1937 q^{35}-1193 q^{34}+824 q^{33}+2261 q^{32}+1624 q^{31}-611 q^{30}-2432 q^{29}-2051 q^{28}+332 q^{27}+2471 q^{26}+2307 q^{25}-2 q^{24}-2325 q^{23}-2486 q^{22}-273 q^{21}+2133 q^{20}+2456 q^{19}+501 q^{18}-1854 q^{17}-2402 q^{16}-622 q^{15}+1619 q^{14}+2217 q^{13}+737 q^{12}-1368 q^{11}-2108 q^{10}-776 q^9+1163 q^8+1909 q^7+888 q^6-914 q^5-1818 q^4-948 q^3+683 q^2+1598 q+1082-373 q^{-1} -1442 q^{-2} -1141 q^{-3} +88 q^{-4} +1136 q^{-5} +1187 q^{-6} +246 q^{-7} -851 q^{-8} -1125 q^{-9} -488 q^{-10} +459 q^{-11} +981 q^{-12} +687 q^{-13} -119 q^{-14} -731 q^{-15} -733 q^{-16} -213 q^{-17} +425 q^{-18} +679 q^{-19} +411 q^{-20} -111 q^{-21} -487 q^{-22} -496 q^{-23} -158 q^{-24} +256 q^{-25} +440 q^{-26} +300 q^{-27} -4 q^{-28} -281 q^{-29} -346 q^{-30} -168 q^{-31} +105 q^{-32} +257 q^{-33} +241 q^{-34} +74 q^{-35} -136 q^{-36} -227 q^{-37} -149 q^{-38} + q^{-39} +133 q^{-40} +172 q^{-41} +84 q^{-42} -46 q^{-43} -118 q^{-44} -111 q^{-45} -29 q^{-46} +59 q^{-47} +88 q^{-48} +57 q^{-49} -2 q^{-50} -54 q^{-51} -55 q^{-52} -15 q^{-53} +14 q^{-54} +32 q^{-55} +28 q^{-56} -19 q^{-58} -12 q^{-59} -6 q^{-60} +11 q^{-62} +6 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math>|J6=<math>q^{111}-2 q^{110}+q^{109}-q^{107}+2 q^{106}-2 q^{105}+4 q^{104}-6 q^{103}+5 q^{102}-q^{101}-8 q^{100}+9 q^{99}-3 q^{98}+8 q^{97}-11 q^{96}+14 q^{95}-6 q^{94}-28 q^{93}+20 q^{92}+3 q^{91}+18 q^{90}-11 q^{89}+30 q^{88}-30 q^{87}-78 q^{86}+31 q^{85}+30 q^{84}+66 q^{83}+19 q^{82}+45 q^{81}-125 q^{80}-226 q^{79}+23 q^{78}+144 q^{77}+278 q^{76}+181 q^{75}+28 q^{74}-473 q^{73}-699 q^{72}-111 q^{71}+491 q^{70}+996 q^{69}+803 q^{68}+48 q^{67}-1376 q^{66}-2011 q^{65}-785 q^{64}+1052 q^{63}+2660 q^{62}+2554 q^{61}+617 q^{60}-2788 q^{59}-4658 q^{58}-2817 q^{57}+1109 q^{56}+5048 q^{55}+5911 q^{54}+2738 q^{53}-3642 q^{52}-8100 q^{51}-6606 q^{50}-584 q^{49}+6652 q^{48}+9938 q^{47}+6682 q^{46}-2449 q^{45}-10386 q^{44}-10831 q^{43}-4152 q^{42}+5889 q^{41}+12395 q^{40}+10773 q^{39}+661 q^{38}-10008 q^{37}-13141 q^{36}-7669 q^{35}+3223 q^{34}+12044 q^{33}+12757 q^{32}+3635 q^{31}-7772 q^{30}-12726 q^{29}-9196 q^{28}+719 q^{27}+10012 q^{26}+12321 q^{25}+4956 q^{24}-5607 q^{23}-10963 q^{22}-8916 q^{21}-566 q^{20}+8026 q^{19}+10991 q^{18}+5165 q^{17}-4175 q^{16}-9334 q^{15}-8315 q^{14}-1347 q^{13}+6443 q^{12}+9918 q^{11}+5532 q^{10}-2727 q^9-7915 q^8-8143 q^7-2609 q^6+4544 q^5+8900 q^4+6380 q^3-563 q^2-5955 q-7898-4355 q^{-1} +1812 q^{-2} +7113 q^{-3} +6961 q^{-4} +2077 q^{-5} -3006 q^{-6} -6632 q^{-7} -5650 q^{-8} -1381 q^{-9} +4114 q^{-10} +6224 q^{-11} +4103 q^{-12} +454 q^{-13} -3892 q^{-14} -5340 q^{-15} -3804 q^{-16} +495 q^{-17} +3739 q^{-18} +4257 q^{-19} +3031 q^{-20} -422 q^{-21} -3054 q^{-22} -4123 q^{-23} -2151 q^{-24} +464 q^{-25} +2278 q^{-26} +3337 q^{-27} +1982 q^{-28} - q^{-29} -2245 q^{-30} -2439 q^{-31} -1640 q^{-32} -350 q^{-33} +1529 q^{-34} +2018 q^{-35} +1730 q^{-36} +91 q^{-37} -807 q^{-38} -1461 q^{-39} -1546 q^{-40} -442 q^{-41} +453 q^{-42} +1317 q^{-43} +933 q^{-44} +690 q^{-45} -80 q^{-46} -886 q^{-47} -890 q^{-48} -667 q^{-49} +99 q^{-50} +269 q^{-51} +759 q^{-52} +633 q^{-53} +131 q^{-54} -209 q^{-55} -512 q^{-56} -340 q^{-57} -403 q^{-58} +102 q^{-59} +328 q^{-60} +330 q^{-61} +242 q^{-62} +18 q^{-63} -52 q^{-64} -350 q^{-65} -178 q^{-66} -65 q^{-67} +57 q^{-68} +133 q^{-69} +142 q^{-70} +152 q^{-71} -76 q^{-72} -65 q^{-73} -95 q^{-74} -61 q^{-75} -27 q^{-76} +32 q^{-77} +98 q^{-78} +13 q^{-79} +20 q^{-80} -15 q^{-81} -23 q^{-82} -37 q^{-83} -14 q^{-84} +24 q^{-85} +2 q^{-86} +14 q^{-87} +5 q^{-88} +3 q^{-89} -11 q^{-90} -8 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{54}-2 q^{53}+q^{52}-q^{50}+5 q^{49}-8 q^{48}+4 q^{47}-2 q^{45}+13 q^{44}-22 q^{43}+7 q^{42}+3 q^{41}+5 q^{40}+28 q^{39}-55 q^{38}-6 q^{37}+13 q^{36}+46 q^{35}+64 q^{34}-125 q^{33}-68 q^{32}+19 q^{31}+145 q^{30}+161 q^{29}-213 q^{28}-210 q^{27}-32 q^{26}+275 q^{25}+344 q^{24}-245 q^{23}-376 q^{22}-167 q^{21}+326 q^{20}+537 q^{19}-171 q^{18}-444 q^{17}-315 q^{16}+252 q^{15}+623 q^{14}-63 q^{13}-377 q^{12}-373 q^{11}+120 q^{10}+583 q^9+6 q^8-251 q^7-347 q^6+q^5+487 q^4+41 q^3-122 q^2-295 q-102+371 q^{-1} +72 q^{-2} +9 q^{-3} -225 q^{-4} -190 q^{-5} +225 q^{-6} +70 q^{-7} +133 q^{-8} -108 q^{-9} -222 q^{-10} +67 q^{-11} +2 q^{-12} +188 q^{-13} +31 q^{-14} -153 q^{-15} -28 q^{-16} -104 q^{-17} +131 q^{-18} +110 q^{-19} -29 q^{-20} -15 q^{-21} -150 q^{-22} +20 q^{-23} +77 q^{-24} +43 q^{-25} +48 q^{-26} -100 q^{-27} -37 q^{-28} +5 q^{-29} +28 q^{-30} +64 q^{-31} -27 q^{-32} -22 q^{-33} -21 q^{-34} -4 q^{-35} +32 q^{-36} + q^{-37} -9 q^{-39} -8 q^{-40} +7 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math> | |
|||
coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{78}+q^{76}-2 q^{75}-q^{74}+5 q^{73}-3 q^{72}-2 q^{71}+5 q^{70}-4 q^{69}-q^{68}+9 q^{67}-9 q^{66}-9 q^{65}+9 q^{64}+7 q^{63}+8 q^{62}+7 q^{61}-29 q^{60}-40 q^{59}+13 q^{58}+57 q^{57}+66 q^{56}-119 q^{54}-145 q^{53}+7 q^{52}+211 q^{51}+264 q^{50}+23 q^{49}-356 q^{48}-465 q^{47}-70 q^{46}+520 q^{45}+746 q^{44}+213 q^{43}-709 q^{42}-1116 q^{41}-432 q^{40}+849 q^{39}+1524 q^{38}+771 q^{37}-892 q^{36}-1937 q^{35}-1193 q^{34}+824 q^{33}+2261 q^{32}+1624 q^{31}-611 q^{30}-2432 q^{29}-2051 q^{28}+332 q^{27}+2471 q^{26}+2307 q^{25}-2 q^{24}-2325 q^{23}-2486 q^{22}-273 q^{21}+2133 q^{20}+2456 q^{19}+501 q^{18}-1854 q^{17}-2402 q^{16}-622 q^{15}+1619 q^{14}+2217 q^{13}+737 q^{12}-1368 q^{11}-2108 q^{10}-776 q^9+1163 q^8+1909 q^7+888 q^6-914 q^5-1818 q^4-948 q^3+683 q^2+1598 q+1082-373 q^{-1} -1442 q^{-2} -1141 q^{-3} +88 q^{-4} +1136 q^{-5} +1187 q^{-6} +246 q^{-7} -851 q^{-8} -1125 q^{-9} -488 q^{-10} +459 q^{-11} +981 q^{-12} +687 q^{-13} -119 q^{-14} -731 q^{-15} -733 q^{-16} -213 q^{-17} +425 q^{-18} +679 q^{-19} +411 q^{-20} -111 q^{-21} -487 q^{-22} -496 q^{-23} -158 q^{-24} +256 q^{-25} +440 q^{-26} +300 q^{-27} -4 q^{-28} -281 q^{-29} -346 q^{-30} -168 q^{-31} +105 q^{-32} +257 q^{-33} +241 q^{-34} +74 q^{-35} -136 q^{-36} -227 q^{-37} -149 q^{-38} + q^{-39} +133 q^{-40} +172 q^{-41} +84 q^{-42} -46 q^{-43} -118 q^{-44} -111 q^{-45} -29 q^{-46} +59 q^{-47} +88 q^{-48} +57 q^{-49} -2 q^{-50} -54 q^{-51} -55 q^{-52} -15 q^{-53} +14 q^{-54} +32 q^{-55} +28 q^{-56} -19 q^{-58} -12 q^{-59} -6 q^{-60} +11 q^{-62} +6 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{109}-q^{107}+2 q^{106}-2 q^{105}+4 q^{104}-6 q^{103}+5 q^{102}-q^{101}-8 q^{100}+9 q^{99}-3 q^{98}+8 q^{97}-11 q^{96}+14 q^{95}-6 q^{94}-28 q^{93}+20 q^{92}+3 q^{91}+18 q^{90}-11 q^{89}+30 q^{88}-30 q^{87}-78 q^{86}+31 q^{85}+30 q^{84}+66 q^{83}+19 q^{82}+45 q^{81}-125 q^{80}-226 q^{79}+23 q^{78}+144 q^{77}+278 q^{76}+181 q^{75}+28 q^{74}-473 q^{73}-699 q^{72}-111 q^{71}+491 q^{70}+996 q^{69}+803 q^{68}+48 q^{67}-1376 q^{66}-2011 q^{65}-785 q^{64}+1052 q^{63}+2660 q^{62}+2554 q^{61}+617 q^{60}-2788 q^{59}-4658 q^{58}-2817 q^{57}+1109 q^{56}+5048 q^{55}+5911 q^{54}+2738 q^{53}-3642 q^{52}-8100 q^{51}-6606 q^{50}-584 q^{49}+6652 q^{48}+9938 q^{47}+6682 q^{46}-2449 q^{45}-10386 q^{44}-10831 q^{43}-4152 q^{42}+5889 q^{41}+12395 q^{40}+10773 q^{39}+661 q^{38}-10008 q^{37}-13141 q^{36}-7669 q^{35}+3223 q^{34}+12044 q^{33}+12757 q^{32}+3635 q^{31}-7772 q^{30}-12726 q^{29}-9196 q^{28}+719 q^{27}+10012 q^{26}+12321 q^{25}+4956 q^{24}-5607 q^{23}-10963 q^{22}-8916 q^{21}-566 q^{20}+8026 q^{19}+10991 q^{18}+5165 q^{17}-4175 q^{16}-9334 q^{15}-8315 q^{14}-1347 q^{13}+6443 q^{12}+9918 q^{11}+5532 q^{10}-2727 q^9-7915 q^8-8143 q^7-2609 q^6+4544 q^5+8900 q^4+6380 q^3-563 q^2-5955 q-7898-4355 q^{-1} +1812 q^{-2} +7113 q^{-3} +6961 q^{-4} +2077 q^{-5} -3006 q^{-6} -6632 q^{-7} -5650 q^{-8} -1381 q^{-9} +4114 q^{-10} +6224 q^{-11} +4103 q^{-12} +454 q^{-13} -3892 q^{-14} -5340 q^{-15} -3804 q^{-16} +495 q^{-17} +3739 q^{-18} +4257 q^{-19} +3031 q^{-20} -422 q^{-21} -3054 q^{-22} -4123 q^{-23} -2151 q^{-24} +464 q^{-25} +2278 q^{-26} +3337 q^{-27} +1982 q^{-28} - q^{-29} -2245 q^{-30} -2439 q^{-31} -1640 q^{-32} -350 q^{-33} +1529 q^{-34} +2018 q^{-35} +1730 q^{-36} +91 q^{-37} -807 q^{-38} -1461 q^{-39} -1546 q^{-40} -442 q^{-41} +453 q^{-42} +1317 q^{-43} +933 q^{-44} +690 q^{-45} -80 q^{-46} -886 q^{-47} -890 q^{-48} -667 q^{-49} +99 q^{-50} +269 q^{-51} +759 q^{-52} +633 q^{-53} +131 q^{-54} -209 q^{-55} -512 q^{-56} -340 q^{-57} -403 q^{-58} +102 q^{-59} +328 q^{-60} +330 q^{-61} +242 q^{-62} +18 q^{-63} -52 q^{-64} -350 q^{-65} -178 q^{-66} -65 q^{-67} +57 q^{-68} +133 q^{-69} +142 q^{-70} +152 q^{-71} -76 q^{-72} -65 q^{-73} -95 q^{-74} -61 q^{-75} -27 q^{-76} +32 q^{-77} +98 q^{-78} +13 q^{-79} +20 q^{-80} -15 q^{-81} -23 q^{-82} -37 q^{-83} -14 q^{-84} +24 q^{-85} +2 q^{-86} +14 q^{-87} +5 q^{-88} +3 q^{-89} -11 q^{-90} -8 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 54]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[7, 12, 8, 13], X[11, 8, 12, 9], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 54]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[7, 12, 8, 13], X[11, 8, 12, 9], |
|||
X[13, 19, 14, 18], X[5, 17, 6, 16], X[17, 7, 18, 6], |
X[13, 19, 14, 18], X[5, 17, 6, 16], X[17, 7, 18, 6], |
||
X[15, 1, 16, 20], X[19, 15, 20, 14], X[9, 2, 10, 3]]</nowiki></ |
X[15, 1, 16, 20], X[19, 15, 20, 14], X[9, 2, 10, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 54]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 54]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7, |
|||
5, -9, 8]</nowiki></ |
5, -9, 8]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 54]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 54]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 54]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 16, 12, 2, 8, 18, 20, 6, 14]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 54]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, -2, -3, 2, -3, -3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 54]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_54_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 54]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 54]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 54]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 54]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_54_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 54]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 54]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 10 2 3 |
|||
-11 + -- - -- + -- + 10 t - 6 t + 2 t |
-11 + -- - -- + -- + 10 t - 6 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 54]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 54]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 4 z + 6 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 54]], KnotSignature[Knot[10, 54]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{47, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 6 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 12], Knot[10, 54]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 54]], KnotSignature[Knot[10, 54]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{47, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 54]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 4 6 2 3 4 5 6 |
|||
-6 - q + -- - -- + - + 8 q - 7 q + 6 q - 4 q + 2 q - q |
-6 - q + -- - -- + - + 8 q - 7 q + 6 q - 4 q + 2 q - q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 54]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 54]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 54]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -8 -6 -4 2 4 6 8 10 12 14 |
|||
3 - q - q - q + q + 2 q + q + 2 q - q + q - q - q - |
3 - q - q - q + q + 2 q + q + 2 q - q + q - q - q - |
||
18 |
18 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 54]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 54]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 |
|||
2 2 2 2 3 z 5 z 2 2 4 z 4 z |
2 2 2 2 3 z 5 z 2 2 4 z 4 z |
||
3 - -- + -- - 2 a + 5 z - ---- + ---- - 3 a z + 4 z - -- + ---- - |
3 - -- + -- - 2 a + 5 z - ---- + ---- - 3 a z + 4 z - -- + ---- - |
||
Line 157: | Line 195: | ||
a z + z + -- |
a z + z + -- |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 54]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 54]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 2 2 z z z 5 z 3 2 z |
2 2 2 z z z 5 z 3 2 z |
||
3 - -- - -- + 2 a - -- + -- + -- - --- - 8 a z - 4 a z - 7 z - -- + |
3 - -- - -- + 2 a - -- + -- + -- - --- - 8 a z - 4 a z - 7 z - -- + |
||
Line 188: | Line 230: | ||
---- + a z + 5 z + ---- + 2 a z + -- + a z |
---- + a z + 5 z + ---- + 2 a z + -- + a z |
||
a 2 a |
a 2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 54]], Vassiliev[3][Knot[10, 54]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 54]], Vassiliev[3][Knot[10, 54]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 54]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 54]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 3 1 3 3 |
|||
5 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
5 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
||
9 5 7 4 5 4 5 3 3 3 3 2 2 |
9 5 7 4 5 4 5 3 3 3 3 2 2 |
||
Line 204: | Line 254: | ||
9 4 11 4 13 5 |
9 4 11 4 13 5 |
||
q t + q t + q t</nowiki></ |
q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 54], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 54], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -13 2 -11 7 5 9 17 3 22 24 5 33 |
|||
16 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + |
16 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + |
||
12 10 9 8 7 6 5 4 3 2 |
12 10 9 8 7 6 5 4 3 2 |
||
Line 217: | Line 271: | ||
9 10 11 12 13 14 15 16 17 |
9 10 11 12 13 14 15 16 17 |
||
14 q - 15 q + 4 q + 5 q - 7 q + 3 q + q - 2 q + q</nowiki></ |
14 q - 15 q + 4 q + 5 q - 7 q + 3 q + q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 16:58, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 54's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X7,12,8,13 X11,8,12,9 X13,19,14,18 X5,17,6,16 X17,7,18,6 X15,1,16,20 X19,15,20,14 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7, 5, -9, 8 |
Dowker-Thistlethwaite code | 4 10 16 12 2 8 18 20 6 14 |
Conway Notation | [23,3,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 4}, {3, 10}, {9, 11}, {10, 12}, {11, 8}, {6, 9}, {5, 7}, {4, 6}, {2, 5}, {1, 3}, {8, 2}, {7, 1}] |
[edit Notes on presentations of 10 54]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 54"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X7,12,8,13 X11,8,12,9 X13,19,14,18 X5,17,6,16 X17,7,18,6 X15,1,16,20 X19,15,20,14 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7, 5, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 16 12 2 8 18 20 6 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[23,3,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {9, 11}, {10, 12}, {11, 8}, {6, 9}, {5, 7}, {4, 6}, {2, 5}, {1, 3}, {8, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 54"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 47, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_12,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 54"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_12,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 54. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|