10 82: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 10 | |
|||
<span id="top"></span> |
|||
k = 82 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,6,-5,1,-2,3,-6,9,-7,10,-8,5,-4,2,-9,7,-10,8/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|- valign=top |
|||
</table> | |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
braid_crossings = 10 | |
|||
|{{Rolfsen Knot Site Links|n=10|k=82|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,6,-5,1,-2,3,-6,9,-7,10,-8,5,-4,2,-9,7,-10,8/goTop.html}} |
|||
braid_width = 3 | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_index = 3 | |
|||
|} |
|||
same_alexander = | |
|||
same_jones = | |
|||
<br style="clear:both" /> |
|||
khovanov_table = <table border=1> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
||
Line 48: | Line 39: | ||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{10}-3 q^9+q^8+9 q^7-14 q^6-4 q^5+30 q^4-23 q^3-23 q^2+54 q-20-49 q^{-1} +71 q^{-2} -9 q^{-3} -70 q^{-4} +74 q^{-5} +5 q^{-6} -75 q^{-7} +60 q^{-8} +13 q^{-9} -58 q^{-10} +36 q^{-11} +11 q^{-12} -31 q^{-13} +17 q^{-14} +4 q^{-15} -12 q^{-16} +7 q^{-17} + q^{-18} -3 q^{-19} + q^{-20} </math> | |
|||
coloured_jones_3 = <math>q^{21}-3 q^{20}+q^{19}+5 q^{18}+q^{17}-14 q^{16}-6 q^{15}+28 q^{14}+19 q^{13}-41 q^{12}-44 q^{11}+46 q^{10}+81 q^9-39 q^8-119 q^7+13 q^6+149 q^5+30 q^4-165 q^3-83 q^2+166 q+130-140 q^{-1} -183 q^{-2} +119 q^{-3} +211 q^{-4} -72 q^{-5} -250 q^{-6} +45 q^{-7} +259 q^{-8} +2 q^{-9} -276 q^{-10} -31 q^{-11} +263 q^{-12} +71 q^{-13} -247 q^{-14} -90 q^{-15} +203 q^{-16} +105 q^{-17} -153 q^{-18} -103 q^{-19} +103 q^{-20} +80 q^{-21} -54 q^{-22} -56 q^{-23} +28 q^{-24} +25 q^{-25} -11 q^{-26} -7 q^{-27} +10 q^{-28} -6 q^{-29} -8 q^{-30} +6 q^{-31} +10 q^{-32} -5 q^{-33} -8 q^{-34} +3 q^{-35} +3 q^{-36} + q^{-37} -3 q^{-38} + q^{-39} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{36}-3 q^{35}+q^{34}+5 q^{33}-3 q^{32}+q^{31}-17 q^{30}+6 q^{29}+31 q^{28}+2 q^{26}-80 q^{25}-20 q^{24}+92 q^{23}+63 q^{22}+70 q^{21}-192 q^{20}-160 q^{19}+76 q^{18}+156 q^{17}+317 q^{16}-183 q^{15}-346 q^{14}-142 q^{13}+54 q^{12}+610 q^{11}+75 q^{10}-282 q^9-387 q^8-362 q^7+613 q^6+361 q^5+142 q^4-315 q^3-838 q^2+230 q+347+671 q^{-1} +132 q^{-2} -1066 q^{-3} -287 q^{-4} +8 q^{-5} +1021 q^{-6} +702 q^{-7} -1021 q^{-8} -699 q^{-9} -426 q^{-10} +1169 q^{-11} +1170 q^{-12} -859 q^{-13} -969 q^{-14} -796 q^{-15} +1194 q^{-16} +1505 q^{-17} -624 q^{-18} -1125 q^{-19} -1119 q^{-20} +1053 q^{-21} +1697 q^{-22} -245 q^{-23} -1049 q^{-24} -1369 q^{-25} +629 q^{-26} +1593 q^{-27} +218 q^{-28} -631 q^{-29} -1346 q^{-30} +61 q^{-31} +1095 q^{-32} +466 q^{-33} -62 q^{-34} -942 q^{-35} -289 q^{-36} +457 q^{-37} +353 q^{-38} +270 q^{-39} -420 q^{-40} -273 q^{-41} +58 q^{-42} +102 q^{-43} +265 q^{-44} -99 q^{-45} -113 q^{-46} -41 q^{-47} -33 q^{-48} +132 q^{-49} -3 q^{-50} -13 q^{-51} -21 q^{-52} -44 q^{-53} +40 q^{-54} +3 q^{-55} +8 q^{-56} - q^{-57} -17 q^{-58} +7 q^{-59} - q^{-60} +3 q^{-61} + q^{-62} -3 q^{-63} + q^{-64} </math> | |
|||
coloured_jones_5 = <math>q^{55}-3 q^{54}+q^{53}+5 q^{52}-3 q^{51}-3 q^{50}-2 q^{49}-5 q^{48}+8 q^{47}+26 q^{46}+4 q^{45}-31 q^{44}-41 q^{43}-32 q^{42}+31 q^{41}+108 q^{40}+106 q^{39}-27 q^{38}-179 q^{37}-220 q^{36}-83 q^{35}+215 q^{34}+417 q^{33}+287 q^{32}-154 q^{31}-571 q^{30}-595 q^{29}-108 q^{28}+598 q^{27}+929 q^{26}+536 q^{25}-383 q^{24}-1102 q^{23}-1021 q^{22}-135 q^{21}+962 q^{20}+1393 q^{19}+795 q^{18}-423 q^{17}-1376 q^{16}-1401 q^{15}-459 q^{14}+859 q^{13}+1665 q^{12}+1436 q^{11}+186 q^{10}-1382 q^9-2220 q^8-1566 q^7+444 q^6+2563 q^5+3042 q^4+999 q^3-2321 q^2-4246 q-2819+1451 q^{-1} +5150 q^{-2} +4654 q^{-3} -199 q^{-4} -5449 q^{-5} -6364 q^{-6} -1414 q^{-7} +5459 q^{-8} +7770 q^{-9} +2920 q^{-10} -5011 q^{-11} -8830 q^{-12} -4455 q^{-13} +4544 q^{-14} +9608 q^{-15} +5625 q^{-16} -3920 q^{-17} -10143 q^{-18} -6722 q^{-19} +3459 q^{-20} +10556 q^{-21} +7526 q^{-22} -2918 q^{-23} -10877 q^{-24} -8367 q^{-25} +2456 q^{-26} +11079 q^{-27} +9088 q^{-28} -1726 q^{-29} -11082 q^{-30} -9890 q^{-31} +827 q^{-32} +10747 q^{-33} +10478 q^{-34} +438 q^{-35} -9888 q^{-36} -10864 q^{-37} -1855 q^{-38} +8497 q^{-39} +10718 q^{-40} +3252 q^{-41} -6585 q^{-42} -9951 q^{-43} -4402 q^{-44} +4437 q^{-45} +8603 q^{-46} +4982 q^{-47} -2356 q^{-48} -6754 q^{-49} -4992 q^{-50} +622 q^{-51} +4837 q^{-52} +4407 q^{-53} +532 q^{-54} -3037 q^{-55} -3508 q^{-56} -1115 q^{-57} +1653 q^{-58} +2498 q^{-59} +1232 q^{-60} -696 q^{-61} -1640 q^{-62} -1061 q^{-63} +178 q^{-64} +944 q^{-65} +802 q^{-66} +90 q^{-67} -520 q^{-68} -546 q^{-69} -145 q^{-70} +237 q^{-71} +332 q^{-72} +155 q^{-73} -88 q^{-74} -198 q^{-75} -120 q^{-76} +30 q^{-77} +93 q^{-78} +73 q^{-79} +16 q^{-80} -43 q^{-81} -53 q^{-82} -6 q^{-83} +17 q^{-84} +12 q^{-85} +16 q^{-86} -3 q^{-87} -13 q^{-88} -2 q^{-89} +3 q^{-90} - q^{-91} +3 q^{-92} + q^{-93} -3 q^{-94} + q^{-95} </math> | |
|||
<table> |
|||
coloured_jones_6 = <math>q^{78}-3 q^{77}+q^{76}+5 q^{75}-3 q^{74}-3 q^{73}-6 q^{72}+10 q^{71}-3 q^{70}+3 q^{69}+29 q^{68}-15 q^{67}-31 q^{66}-50 q^{65}+16 q^{64}+18 q^{63}+57 q^{62}+149 q^{61}+13 q^{60}-108 q^{59}-269 q^{58}-138 q^{57}-83 q^{56}+165 q^{55}+588 q^{54}+435 q^{53}+110 q^{52}-592 q^{51}-726 q^{50}-907 q^{49}-356 q^{48}+952 q^{47}+1486 q^{46}+1487 q^{45}+150 q^{44}-801 q^{43}-2351 q^{42}-2430 q^{41}-528 q^{40}+1390 q^{39}+3160 q^{38}+2606 q^{37}+1802 q^{36}-1595 q^{35}-3927 q^{34}-3673 q^{33}-2004 q^{32}+1294 q^{31}+3033 q^{30}+5316 q^{29}+2875 q^{28}-323 q^{27}-2954 q^{26}-4788 q^{25}-4200 q^{24}-3084 q^{23}+2559 q^{22}+4694 q^{21}+6288 q^{20}+5394 q^{19}+1266 q^{18}-4553 q^{17}-10970 q^{16}-8683 q^{15}-4599 q^{14}+5123 q^{13}+13899 q^{12}+16169 q^{11}+8088 q^{10}-8616 q^9-18535 q^8-22543 q^7-10353 q^6+10285 q^5+28258 q^4+28942 q^3+8648 q^2-15292 q-36555-33436 q^{-1} -8032 q^{-2} +27043 q^{-3} +45373 q^{-4} +32754 q^{-5} +1665 q^{-6} -37824 q^{-7} -52042 q^{-8} -32205 q^{-9} +13503 q^{-10} +50279 q^{-11} +52582 q^{-12} +23344 q^{-13} -28472 q^{-14} -60533 q^{-15} -52249 q^{-16} -3779 q^{-17} +46271 q^{-18} +63647 q^{-19} +41071 q^{-20} -16261 q^{-21} -61493 q^{-22} -64549 q^{-23} -17582 q^{-24} +39891 q^{-25} +68311 q^{-26} +52193 q^{-27} -6878 q^{-28} -60252 q^{-29} -71364 q^{-30} -26411 q^{-31} +35246 q^{-32} +70996 q^{-33} +59376 q^{-34} -459 q^{-35} -59542 q^{-36} -76726 q^{-37} -33819 q^{-38} +31002 q^{-39} +73370 q^{-40} +66752 q^{-41} +7641 q^{-42} -56589 q^{-43} -81421 q^{-44} -44089 q^{-45} +21451 q^{-46} +71209 q^{-47} +74062 q^{-48} +21515 q^{-49} -44801 q^{-50} -79670 q^{-51} -55378 q^{-52} +3232 q^{-53} +57328 q^{-54} +73753 q^{-55} +37124 q^{-56} -22204 q^{-57} -64074 q^{-58} -58169 q^{-59} -16982 q^{-60} +31733 q^{-61} +58619 q^{-62} +43188 q^{-63} +1708 q^{-64} -37044 q^{-65} -45851 q^{-66} -26624 q^{-67} +6394 q^{-68} +33388 q^{-69} +34266 q^{-70} +13927 q^{-71} -12191 q^{-72} -25040 q^{-73} -21824 q^{-74} -6427 q^{-75} +11918 q^{-76} +18345 q^{-77} +12565 q^{-78} +130 q^{-79} -8631 q^{-80} -11256 q^{-81} -7032 q^{-82} +1861 q^{-83} +6599 q^{-84} +6378 q^{-85} +2139 q^{-86} -1540 q^{-87} -3953 q^{-88} -3710 q^{-89} -260 q^{-90} +1755 q^{-91} +2312 q^{-92} +1069 q^{-93} +20 q^{-94} -1161 q^{-95} -1533 q^{-96} -185 q^{-97} +463 q^{-98} +820 q^{-99} +386 q^{-100} +163 q^{-101} -364 q^{-102} -661 q^{-103} -98 q^{-104} +96 q^{-105} +311 q^{-106} +156 q^{-107} +153 q^{-108} -84 q^{-109} -261 q^{-110} -60 q^{-111} -24 q^{-112} +87 q^{-113} +43 q^{-114} +87 q^{-115} +2 q^{-116} -72 q^{-117} -15 q^{-118} -23 q^{-119} +16 q^{-120} +25 q^{-122} +5 q^{-123} -15 q^{-124} +2 q^{-125} -6 q^{-126} +3 q^{-127} - q^{-128} +3 q^{-129} + q^{-130} -3 q^{-131} + q^{-132} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = <math>q^{105}-3 q^{104}+q^{103}+5 q^{102}-3 q^{101}-3 q^{100}-6 q^{99}+6 q^{98}+12 q^{97}-8 q^{96}+6 q^{95}+10 q^{94}-16 q^{93}-26 q^{92}-41 q^{91}+6 q^{90}+76 q^{89}+46 q^{88}+67 q^{87}+39 q^{86}-79 q^{85}-150 q^{84}-274 q^{83}-157 q^{82}+146 q^{81}+311 q^{80}+515 q^{79}+476 q^{78}+82 q^{77}-345 q^{76}-1034 q^{75}-1244 q^{74}-641 q^{73}+155 q^{72}+1419 q^{71}+2168 q^{70}+1927 q^{69}+1023 q^{68}-1195 q^{67}-3255 q^{66}-3837 q^{65}-3138 q^{64}-240 q^{63}+3190 q^{62}+5443 q^{61}+6370 q^{60}+3622 q^{59}-1238 q^{58}-5822 q^{57}-9224 q^{56}-7979 q^{55}-3200 q^{54}+2987 q^{53}+9746 q^{52}+11975 q^{51}+9178 q^{50}+2980 q^{49}-6316 q^{48}-12313 q^{47}-13642 q^{46}-10644 q^{45}-1690 q^{44}+6900 q^{43}+13181 q^{42}+15963 q^{41}+11257 q^{40}+4073 q^{39}-4503 q^{38}-13756 q^{37}-17258 q^{36}-17364 q^{35}-11832 q^{34}+905 q^{33}+13252 q^{32}+25589 q^{31}+31084 q^{30}+22737 q^{29}+5227 q^{28}-21326 q^{27}-45132 q^{26}-51161 q^{25}-37738 q^{24}-1252 q^{23}+44366 q^{22}+74957 q^{21}+78577 q^{20}+42293 q^{19}-22043 q^{18}-83392 q^{17}-117236 q^{16}-96077 q^{15}-23117 q^{14}+68266 q^{13}+141795 q^{12}+152136 q^{11}+86431 q^{10}-26730 q^9-143331 q^8-198453 q^7-157725 q^6-37398 q^5+117268 q^4+224549 q^3+225545 q^2+116048 q-65594-225596 q^{-1} -279447 q^{-2} -197716 q^{-3} -4731 q^{-4} +200891 q^{-5} +312574 q^{-6} +273053 q^{-7} +84760 q^{-8} -155868 q^{-9} -323974 q^{-10} -334103 q^{-11} -164262 q^{-12} +97583 q^{-13} +315163 q^{-14} +377966 q^{-15} +236813 q^{-16} -34453 q^{-17} -292507 q^{-18} -404840 q^{-19} -296738 q^{-20} -26454 q^{-21} +261167 q^{-22} +417350 q^{-23} +343536 q^{-24} +80554 q^{-25} -228062 q^{-26} -419971 q^{-27} -377010 q^{-28} -124735 q^{-29} +196753 q^{-30} +416587 q^{-31} +400284 q^{-32} +158918 q^{-33} -170943 q^{-34} -411425 q^{-35} -415711 q^{-36} -183943 q^{-37} +151132 q^{-38} +407191 q^{-39} +427414 q^{-40} +202430 q^{-41} -137432 q^{-42} -405703 q^{-43} -438133 q^{-44} -218015 q^{-45} +127069 q^{-46} +407318 q^{-47} +451159 q^{-48} +234645 q^{-49} -116843 q^{-50} -410023 q^{-51} -467104 q^{-52} -256389 q^{-53} +101019 q^{-54} +410025 q^{-55} +485514 q^{-56} +285538 q^{-57} -75241 q^{-58} -401454 q^{-59} -501391 q^{-60} -321524 q^{-61} +35128 q^{-62} +377573 q^{-63} +508816 q^{-64} +360309 q^{-65} +18722 q^{-66} -333930 q^{-67} -499139 q^{-68} -393445 q^{-69} -82426 q^{-70} +268990 q^{-71} +466223 q^{-72} +411992 q^{-73} +146770 q^{-74} -187803 q^{-75} -407913 q^{-76} -407073 q^{-77} -200167 q^{-78} +99580 q^{-79} +327782 q^{-80} +375102 q^{-81} +232986 q^{-82} -17228 q^{-83} -236211 q^{-84} -318697 q^{-85} -238645 q^{-86} -47240 q^{-87} +145329 q^{-88} +246292 q^{-89} +218615 q^{-90} +86908 q^{-91} -68242 q^{-92} -170403 q^{-93} -179246 q^{-94} -100329 q^{-95} +12623 q^{-96} +102195 q^{-97} +131276 q^{-98} +92925 q^{-99} +19427 q^{-100} -49942 q^{-101} -84989 q^{-102} -73050 q^{-103} -31339 q^{-104} +16175 q^{-105} +47526 q^{-106} +49468 q^{-107} +29851 q^{-108} +1405 q^{-109} -21905 q^{-110} -28819 q^{-111} -22099 q^{-112} -7330 q^{-113} +7487 q^{-114} +13906 q^{-115} +13180 q^{-116} +7051 q^{-117} -883 q^{-118} -5172 q^{-119} -6478 q^{-120} -4481 q^{-121} -748 q^{-122} +1140 q^{-123} +2197 q^{-124} +1916 q^{-125} +595 q^{-126} +229 q^{-127} -347 q^{-128} -433 q^{-129} +110 q^{-130} -192 q^{-131} -185 q^{-132} -307 q^{-133} -579 q^{-134} -9 q^{-135} +196 q^{-136} +329 q^{-137} +583 q^{-138} +249 q^{-139} +70 q^{-140} -204 q^{-141} -551 q^{-142} -273 q^{-143} -96 q^{-144} +53 q^{-145} +286 q^{-146} +186 q^{-147} +184 q^{-148} +57 q^{-149} -182 q^{-150} -131 q^{-151} -99 q^{-152} -51 q^{-153} +58 q^{-154} +39 q^{-155} +71 q^{-156} +60 q^{-157} -33 q^{-158} -18 q^{-159} -29 q^{-160} -24 q^{-161} +10 q^{-162} - q^{-163} +13 q^{-164} +14 q^{-165} -7 q^{-166} -2 q^{-168} -6 q^{-169} +3 q^{-170} - q^{-171} +3 q^{-172} + q^{-173} -3 q^{-174} + q^{-175} </math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 82]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[3, 9, 4, 8], X[15, 3, 16, 2], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 82]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[3, 9, 4, 8], X[15, 3, 16, 2], |
|||
X[5, 15, 6, 14], X[9, 5, 10, 4], X[11, 18, 12, 19], X[13, 20, 14, 1], |
X[5, 15, 6, 14], X[9, 5, 10, 4], X[11, 18, 12, 19], X[13, 20, 14, 1], |
||
X[17, 10, 18, 11], X[19, 12, 20, 13]]</nowiki></ |
X[17, 10, 18, 11], X[19, 12, 20, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 82]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 6, -5, 1, -2, 3, -6, 9, -7, 10, -8, 5, -4, 2, -9, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 82]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 6, -5, 1, -2, 3, -6, 9, -7, 10, -8, 5, -4, 2, -9, |
|||
7, -10, 8]</nowiki></ |
7, -10, 8]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 82]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, 2, -1, 2, -1, 2, 2}]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 82]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 14, 16, 4, 18, 20, 2, 10, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 82]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, 2, -1, 2, -1, 2, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 82]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 82]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_82_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 82]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 1, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 82]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 8 12 2 3 4 |
|||
-13 - t + -- - -- + -- + 12 t - 8 t + 4 t - t |
-13 - t + -- - -- + -- + 12 t - 8 t + 4 t - t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 82]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 - 4 z - 4 z - z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 82]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 82]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 |
|||
1 - 4 z - 4 z - z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 82]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 5 8 10 10 10 2 3 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 82]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 82]], KnotSignature[Knot[10, 82]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{63, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 82]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 5 8 10 10 10 2 3 |
|||
-7 + q - -- + -- - -- + -- - -- + -- + 5 q - 3 q + q |
-7 + q - -- + -- - -- + -- - -- + -- + 5 q - 3 q + q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></ |
q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 82]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -16 2 -12 -10 -8 4 -4 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 82]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 82]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 -18 -16 2 -12 -10 -8 4 -4 2 2 |
|||
q - q + q - --- - q + q - q + -- - q + -- - q + |
q - q + q - --- - q + q - q + -- - q + -- - q + |
||
14 6 2 |
14 6 2 |
||
Line 99: | Line 179: | ||
4 6 8 |
4 6 8 |
||
q - q + q</nowiki></ |
q - q + q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 82]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 82]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 2 4 2 4 4 4 6 |
|||
1 + 4 z - 8 a z + 4 a z + 4 z - 12 a z + 4 a z + z - |
|||
2 6 4 6 2 8 |
|||
6 a z + a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 82]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
z 5 7 2 z 2 2 4 2 |
z 5 7 2 z 2 2 4 2 |
||
1 - - - 2 a z + 2 a z + a z - 6 z + -- - 13 a z - 5 a z - |
1 - - - 2 a z + 2 a z + a z - 6 z + -- - 13 a z - 5 a z - |
||
Line 130: | Line 226: | ||
3 9 |
3 9 |
||
2 a z</nowiki></ |
2 a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 82]], Vassiliev[3][Knot[10, 82]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 82]], Vassiliev[3][Knot[10, 82]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 82]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 6 1 2 1 3 2 5 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 145: | Line 251: | ||
3 3 5 3 7 4 |
3 3 5 3 7 4 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 82], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 3 -18 7 12 4 17 31 11 36 |
|||
-20 + q - --- + q + --- - --- + --- + --- - --- + --- + --- - |
|||
19 17 16 15 14 13 12 11 |
|||
q q q q q q q q |
|||
58 13 60 75 5 74 70 9 71 49 2 |
|||
--- + -- + -- - -- + -- + -- - -- - -- + -- - -- + 54 q - 23 q - |
|||
10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q |
|||
3 4 5 6 7 8 9 10 |
|||
23 q + 30 q - 4 q - 14 q + 9 q + q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 82's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X7,16,8,17 X3948 X15,3,16,2 X5,15,6,14 X9,5,10,4 X11,18,12,19 X13,20,14,1 X17,10,18,11 X19,12,20,13 |
Gauss code | -1, 4, -3, 6, -5, 1, -2, 3, -6, 9, -7, 10, -8, 5, -4, 2, -9, 7, -10, 8 |
Dowker-Thistlethwaite code | 6 8 14 16 4 18 20 2 10 12 |
Conway Notation | [.4.2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{12, 3}, {1, 5}, {11, 4}, {5, 2}, {6, 12}, {3, 7}, {2, 6}, {4, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 1}] |
[edit Notes on presentations of 10 82]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 82"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X7,16,8,17 X3948 X15,3,16,2 X5,15,6,14 X9,5,10,4 X11,18,12,19 X13,20,14,1 X17,10,18,11 X19,12,20,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 6, -5, 1, -2, 3, -6, 9, -7, 10, -8, 5, -4, 2, -9, 7, -10, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 14 16 4 18 20 2 10 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.4.2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 3}, {1, 5}, {11, 4}, {5, 2}, {6, 12}, {3, 7}, {2, 6}, {4, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 82"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 82"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 82. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|