10 81
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 81's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X8493 X12,6,13,5 X16,9,17,10 X20,17,1,18 X18,13,19,14 X14,19,15,20 X10,15,11,16 X6,12,7,11 X2837 |
Gauss code | 1, -10, 2, -1, 3, -9, 10, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5 |
Dowker-Thistlethwaite code | 4 8 12 2 16 6 18 10 20 14 |
Conway Notation | [(21,2)(21,2)] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
![]() |
![]() [{3, 12}, {2, 5}, {1, 3}, {13, 9}, {12, 2}, {4, 7}, {6, 8}, {7, 10}, {9, 11}, {10, 6}, {5, 13}, {11, 4}, {8, 1}] |
[edit Notes on presentations of 10 81]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 81"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X12,6,13,5 X16,9,17,10 X20,17,1,18 X18,13,19,14 X14,19,15,20 X10,15,11,16 X6,12,7,11 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 3, -9, 10, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 16 6 18 10 20 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[(21,2)(21,2)] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,-2,1,3,2,2,-4,-3,-3,-3,-4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 5}, {1, 3}, {13, 9}, {12, 2}, {4, 7}, {6, 8}, {7, 10}, {9, 11}, {10, 6}, {5, 13}, {11, 4}, {8, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+8 t^2-20 t+27-20 t^{-1} +8 t^{-2} - t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+2 z^4+3 z^2+1} |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 85, 0 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+3 q^4-7 q^3+11 q^2-13 q+15-13 q^{-1} +11 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+2 a^2 z^4+2 z^4 a^{-2} -2 z^4-a^4 z^2+3 a^2 z^2+3 z^2 a^{-2} -z^2 a^{-4} -z^2-a^4+a^2+ a^{-2} - a^{-4} +1} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+5 a^3 z^7+13 a z^7+13 z^7 a^{-1} +5 z^7 a^{-3} +3 a^4 z^6+3 z^6 a^{-4} -6 z^6+a^5 z^5-8 a^3 z^5-31 a z^5-31 z^5 a^{-1} -8 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4-9 a^2 z^4-9 z^4 a^{-2} -5 z^4 a^{-4} -8 z^4-2 a^5 z^3+5 a^3 z^3+25 a z^3+25 z^3 a^{-1} +5 z^3 a^{-3} -2 z^3 a^{-5} +3 a^4 z^2+6 a^2 z^2+6 z^2 a^{-2} +3 z^2 a^{-4} +6 z^2+a^5 z-2 a^3 z-8 a z-8 z a^{-1} -2 z a^{-3} +z a^{-5} -a^4-a^2- a^{-2} - a^{-4} +1} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{12}-3 q^{10}+2 q^8-q^4+4 q^2-1+4 q^{-2} - q^{-4} +2 q^{-8} -3 q^{-10} + q^{-12} - q^{-16} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+9 q^{72}-9 q^{70}+q^{68}+14 q^{66}-35 q^{64}+56 q^{62}-69 q^{60}+55 q^{58}-16 q^{56}-50 q^{54}+129 q^{52}-183 q^{50}+191 q^{48}-130 q^{46}+4 q^{44}+139 q^{42}-255 q^{40}+293 q^{38}-227 q^{36}+79 q^{34}+91 q^{32}-219 q^{30}+247 q^{28}-166 q^{26}+14 q^{24}+137 q^{22}-214 q^{20}+173 q^{18}-34 q^{16}-147 q^{14}+296 q^{12}-335 q^{10}+249 q^8-55 q^6-172 q^4+360 q^2-427+360 q^{-2} -172 q^{-4} -55 q^{-6} +249 q^{-8} -335 q^{-10} +296 q^{-12} -147 q^{-14} -34 q^{-16} +173 q^{-18} -214 q^{-20} +137 q^{-22} +14 q^{-24} -166 q^{-26} +247 q^{-28} -219 q^{-30} +91 q^{-32} +79 q^{-34} -227 q^{-36} +293 q^{-38} -255 q^{-40} +139 q^{-42} +4 q^{-44} -130 q^{-46} +191 q^{-48} -183 q^{-50} +129 q^{-52} -50 q^{-54} -16 q^{-56} +55 q^{-58} -69 q^{-60} +56 q^{-62} -35 q^{-64} +14 q^{-66} + q^{-68} -9 q^{-70} +9 q^{-72} -8 q^{-74} +5 q^{-76} -2 q^{-78} + q^{-80} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+2 q^9-4 q^7+4 q^5-2 q^3+2 q+2 q^{-1} -2 q^{-3} +4 q^{-5} -4 q^{-7} +2 q^{-9} - q^{-11} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-2 q^{30}+8 q^{26}-10 q^{24}-8 q^{22}+26 q^{20}-13 q^{18}-27 q^{16}+38 q^{14}-38 q^{10}+26 q^8+15 q^6-26 q^4+q^2+21+ q^{-2} -26 q^{-4} +15 q^{-6} +26 q^{-8} -38 q^{-10} +38 q^{-14} -27 q^{-16} -13 q^{-18} +26 q^{-20} -8 q^{-22} -10 q^{-24} +8 q^{-26} -2 q^{-30} + q^{-32} } |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 81"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+8 t^2-20 t+27-20 t^{-1} +8 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+2 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 85, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+3 q^4-7 q^3+11 q^2-13 q+15-13 q^{-1} +11 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+2 a^2 z^4+2 z^4 a^{-2} -2 z^4-a^4 z^2+3 a^2 z^2+3 z^2 a^{-2} -z^2 a^{-4} -z^2-a^4+a^2+ a^{-2} - a^{-4} +1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+5 a^3 z^7+13 a z^7+13 z^7 a^{-1} +5 z^7 a^{-3} +3 a^4 z^6+3 z^6 a^{-4} -6 z^6+a^5 z^5-8 a^3 z^5-31 a z^5-31 z^5 a^{-1} -8 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4-9 a^2 z^4-9 z^4 a^{-2} -5 z^4 a^{-4} -8 z^4-2 a^5 z^3+5 a^3 z^3+25 a z^3+25 z^3 a^{-1} +5 z^3 a^{-3} -2 z^3 a^{-5} +3 a^4 z^2+6 a^2 z^2+6 z^2 a^{-2} +3 z^2 a^{-4} +6 z^2+a^5 z-2 a^3 z-8 a z-8 z a^{-1} -2 z a^{-3} +z a^{-5} -a^4-a^2- a^{-2} - a^{-4} +1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_109,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 81"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_109,} |
Vassiliev invariants
V2 and V3: | (3, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 81. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-3 q^{14}+2 q^{13}+9 q^{12}-21 q^{11}+4 q^{10}+43 q^9-60 q^8-10 q^7+108 q^6-98 q^5-48 q^4+172 q^3-109 q^2-89 q+199-89 q^{-1} -109 q^{-2} +172 q^{-3} -48 q^{-4} -98 q^{-5} +108 q^{-6} -10 q^{-7} -60 q^{-8} +43 q^{-9} +4 q^{-10} -21 q^{-11} +9 q^{-12} +2 q^{-13} -3 q^{-14} + q^{-15} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{30}+3 q^{29}-2 q^{28}-4 q^{27}+q^{26}+17 q^{25}-5 q^{24}-39 q^{23}+2 q^{22}+83 q^{21}+12 q^{20}-144 q^{19}-64 q^{18}+237 q^{17}+144 q^{16}-320 q^{15}-287 q^{14}+395 q^{13}+472 q^{12}-440 q^{11}-677 q^{10}+430 q^9+894 q^8-387 q^7-1074 q^6+290 q^5+1235 q^4-196 q^3-1308 q^2+54 q+1359+54 q^{-1} -1308 q^{-2} -196 q^{-3} +1235 q^{-4} +290 q^{-5} -1074 q^{-6} -387 q^{-7} +894 q^{-8} +430 q^{-9} -677 q^{-10} -440 q^{-11} +472 q^{-12} +395 q^{-13} -287 q^{-14} -320 q^{-15} +144 q^{-16} +237 q^{-17} -64 q^{-18} -144 q^{-19} +12 q^{-20} +83 q^{-21} +2 q^{-22} -39 q^{-23} -5 q^{-24} +17 q^{-25} + q^{-26} -4 q^{-27} -2 q^{-28} +3 q^{-29} - q^{-30} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}-3 q^{49}+2 q^{48}+4 q^{47}-6 q^{46}+3 q^{45}-16 q^{44}+16 q^{43}+34 q^{42}-29 q^{41}-14 q^{40}-87 q^{39}+62 q^{38}+185 q^{37}-25 q^{36}-96 q^{35}-399 q^{34}+58 q^{33}+615 q^{32}+278 q^{31}-116 q^{30}-1255 q^{29}-429 q^{28}+1230 q^{27}+1314 q^{26}+525 q^{25}-2569 q^{24}-1990 q^{23}+1284 q^{22}+3006 q^{21}+2539 q^{20}-3483 q^{19}-4520 q^{18}-33 q^{17}+4439 q^{16}+5724 q^{15}-3114 q^{14}-6965 q^{13}-2568 q^{12}+4730 q^{11}+8927 q^{10}-1545 q^9-8332 q^8-5289 q^7+3864 q^6+11073 q^5+460 q^4-8389 q^3-7331 q^2+2332 q+11797+2332 q^{-1} -7331 q^{-2} -8389 q^{-3} +460 q^{-4} +11073 q^{-5} +3864 q^{-6} -5289 q^{-7} -8332 q^{-8} -1545 q^{-9} +8927 q^{-10} +4730 q^{-11} -2568 q^{-12} -6965 q^{-13} -3114 q^{-14} +5724 q^{-15} +4439 q^{-16} -33 q^{-17} -4520 q^{-18} -3483 q^{-19} +2539 q^{-20} +3006 q^{-21} +1284 q^{-22} -1990 q^{-23} -2569 q^{-24} +525 q^{-25} +1314 q^{-26} +1230 q^{-27} -429 q^{-28} -1255 q^{-29} -116 q^{-30} +278 q^{-31} +615 q^{-32} +58 q^{-33} -399 q^{-34} -96 q^{-35} -25 q^{-36} +185 q^{-37} +62 q^{-38} -87 q^{-39} -14 q^{-40} -29 q^{-41} +34 q^{-42} +16 q^{-43} -16 q^{-44} +3 q^{-45} -6 q^{-46} +4 q^{-47} +2 q^{-48} -3 q^{-49} + q^{-50} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{75}+3 q^{74}-2 q^{73}-4 q^{72}+6 q^{71}+2 q^{70}-4 q^{69}+5 q^{68}-11 q^{67}-22 q^{66}+23 q^{65}+43 q^{64}+11 q^{63}-14 q^{62}-90 q^{61}-112 q^{60}+40 q^{59}+238 q^{58}+245 q^{57}+2 q^{56}-416 q^{55}-645 q^{54}-200 q^{53}+710 q^{52}+1312 q^{51}+783 q^{50}-897 q^{49}-2429 q^{48}-2020 q^{47}+699 q^{46}+3831 q^{45}+4318 q^{44}+432 q^{43}-5363 q^{42}-7663 q^{41}-3090 q^{40}+6098 q^{39}+12133 q^{38}+7872 q^{37}-5472 q^{36}-16917 q^{35}-14774 q^{34}+2252 q^{33}+21133 q^{32}+23676 q^{31}+3836 q^{30}-23638 q^{29}-33459 q^{28}-12909 q^{27}+23384 q^{26}+43029 q^{25}+24403 q^{24}-20125 q^{23}-51135 q^{22}-36996 q^{21}+13867 q^{20}+56767 q^{19}+49718 q^{18}-5493 q^{17}-59785 q^{16}-60976 q^{15}-4204 q^{14}+60057 q^{13}+70514 q^{12}+13932 q^{11}-58298 q^{10}-77413 q^9-23291 q^8+54796 q^7+82432 q^6+31414 q^5-50368 q^4-84899 q^3-38762 q^2+44856 q+86051+44856 q^{-1} -38762 q^{-2} -84899 q^{-3} -50368 q^{-4} +31414 q^{-5} +82432 q^{-6} +54796 q^{-7} -23291 q^{-8} -77413 q^{-9} -58298 q^{-10} +13932 q^{-11} +70514 q^{-12} +60057 q^{-13} -4204 q^{-14} -60976 q^{-15} -59785 q^{-16} -5493 q^{-17} +49718 q^{-18} +56767 q^{-19} +13867 q^{-20} -36996 q^{-21} -51135 q^{-22} -20125 q^{-23} +24403 q^{-24} +43029 q^{-25} +23384 q^{-26} -12909 q^{-27} -33459 q^{-28} -23638 q^{-29} +3836 q^{-30} +23676 q^{-31} +21133 q^{-32} +2252 q^{-33} -14774 q^{-34} -16917 q^{-35} -5472 q^{-36} +7872 q^{-37} +12133 q^{-38} +6098 q^{-39} -3090 q^{-40} -7663 q^{-41} -5363 q^{-42} +432 q^{-43} +4318 q^{-44} +3831 q^{-45} +699 q^{-46} -2020 q^{-47} -2429 q^{-48} -897 q^{-49} +783 q^{-50} +1312 q^{-51} +710 q^{-52} -200 q^{-53} -645 q^{-54} -416 q^{-55} +2 q^{-56} +245 q^{-57} +238 q^{-58} +40 q^{-59} -112 q^{-60} -90 q^{-61} -14 q^{-62} +11 q^{-63} +43 q^{-64} +23 q^{-65} -22 q^{-66} -11 q^{-67} +5 q^{-68} -4 q^{-69} +2 q^{-70} +6 q^{-71} -4 q^{-72} -2 q^{-73} +3 q^{-74} - q^{-75} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|