10 121: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 121 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-4,5,-6,1,-2,9,-3,4,-7,6,-9,8,-10,7,-5,3,-8,2/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=121|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-4,5,-6,1,-2,9,-3,4,-7,6,-9,8,-10,7,-5,3,-8,2/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = [[K11a41]], [[K11a183]], [[K11a198]], [[K11a331]], |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11a41]], [[K11a183]], [[K11a198]], [[K11a331]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>&nbsp;</td><td>4</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>&nbsp;</td><td>4</td></tr>
Line 72: Line 40:
<tr align=center><td>-15</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^7-5 q^6+5 q^5+15 q^4-41 q^3+12 q^2+82 q-115-20 q^{-1} +203 q^{-2} -175 q^{-3} -99 q^{-4} +312 q^{-5} -178 q^{-6} -179 q^{-7} +348 q^{-8} -129 q^{-9} -215 q^{-10} +291 q^{-11} -52 q^{-12} -186 q^{-13} +170 q^{-14} +7 q^{-15} -106 q^{-16} +59 q^{-17} +17 q^{-18} -32 q^{-19} +10 q^{-20} +4 q^{-21} -4 q^{-22} + q^{-23} </math> |

coloured_jones_3 = <math>-q^{15}+5 q^{14}-5 q^{13}-10 q^{12}+11 q^{11}+32 q^{10}-19 q^9-100 q^8+38 q^7+208 q^6+4 q^5-404 q^4-125 q^3+641 q^2+387 q-874-788 q^{-1} +1013 q^{-2} +1320 q^{-3} -1038 q^{-4} -1872 q^{-5} +896 q^{-6} +2402 q^{-7} -644 q^{-8} -2813 q^{-9} +294 q^{-10} +3110 q^{-11} +64 q^{-12} -3232 q^{-13} -449 q^{-14} +3233 q^{-15} +784 q^{-16} -3059 q^{-17} -1109 q^{-18} +2765 q^{-19} +1356 q^{-20} -2331 q^{-21} -1511 q^{-22} +1798 q^{-23} +1543 q^{-24} -1233 q^{-25} -1429 q^{-26} +710 q^{-27} +1184 q^{-28} -297 q^{-29} -866 q^{-30} +34 q^{-31} +556 q^{-32} +72 q^{-33} -296 q^{-34} -89 q^{-35} +134 q^{-36} +60 q^{-37} -54 q^{-38} -25 q^{-39} +18 q^{-40} +8 q^{-41} -5 q^{-42} -4 q^{-43} +4 q^{-44} - q^{-45} </math> |
{{Display Coloured Jones|J2=<math>q^7-5 q^6+5 q^5+15 q^4-41 q^3+12 q^2+82 q-115-20 q^{-1} +203 q^{-2} -175 q^{-3} -99 q^{-4} +312 q^{-5} -178 q^{-6} -179 q^{-7} +348 q^{-8} -129 q^{-9} -215 q^{-10} +291 q^{-11} -52 q^{-12} -186 q^{-13} +170 q^{-14} +7 q^{-15} -106 q^{-16} +59 q^{-17} +17 q^{-18} -32 q^{-19} +10 q^{-20} +4 q^{-21} -4 q^{-22} + q^{-23} </math>|J3=<math>-q^{15}+5 q^{14}-5 q^{13}-10 q^{12}+11 q^{11}+32 q^{10}-19 q^9-100 q^8+38 q^7+208 q^6+4 q^5-404 q^4-125 q^3+641 q^2+387 q-874-788 q^{-1} +1013 q^{-2} +1320 q^{-3} -1038 q^{-4} -1872 q^{-5} +896 q^{-6} +2402 q^{-7} -644 q^{-8} -2813 q^{-9} +294 q^{-10} +3110 q^{-11} +64 q^{-12} -3232 q^{-13} -449 q^{-14} +3233 q^{-15} +784 q^{-16} -3059 q^{-17} -1109 q^{-18} +2765 q^{-19} +1356 q^{-20} -2331 q^{-21} -1511 q^{-22} +1798 q^{-23} +1543 q^{-24} -1233 q^{-25} -1429 q^{-26} +710 q^{-27} +1184 q^{-28} -297 q^{-29} -866 q^{-30} +34 q^{-31} +556 q^{-32} +72 q^{-33} -296 q^{-34} -89 q^{-35} +134 q^{-36} +60 q^{-37} -54 q^{-38} -25 q^{-39} +18 q^{-40} +8 q^{-41} -5 q^{-42} -4 q^{-43} +4 q^{-44} - q^{-45} </math>|J4=<math>q^{26}-5 q^{25}+5 q^{24}+10 q^{23}-16 q^{22}-2 q^{21}-25 q^{20}+52 q^{19}+82 q^{18}-106 q^{17}-97 q^{16}-176 q^{15}+289 q^{14}+590 q^{13}-173 q^{12}-644 q^{11}-1236 q^{10}+481 q^9+2406 q^8+1127 q^7-1182 q^6-4720 q^5-1616 q^4+4894 q^3+5955 q^2+1523 q-9653-8735 q^{-1} +3822 q^{-2} +12915 q^{-3} +10561 q^{-4} -11015 q^{-5} -18889 q^{-6} -4083 q^{-7} +16524 q^{-8} +23284 q^{-9} -5597 q^{-10} -26135 q^{-11} -15946 q^{-12} +13781 q^{-13} +33559 q^{-14} +3832 q^{-15} -27397 q^{-16} -26171 q^{-17} +7018 q^{-18} +38261 q^{-19} +12749 q^{-20} -24101 q^{-21} -32180 q^{-22} -530 q^{-23} +37954 q^{-24} +19437 q^{-25} -18052 q^{-26} -34142 q^{-27} -7995 q^{-28} +33219 q^{-29} +23876 q^{-30} -9405 q^{-31} -31723 q^{-32} -14982 q^{-33} +23705 q^{-34} +24646 q^{-35} +813 q^{-36} -23810 q^{-37} -18806 q^{-38} +11021 q^{-39} +19624 q^{-40} +8483 q^{-41} -12097 q^{-42} -16370 q^{-43} +500 q^{-44} +10327 q^{-45} +9553 q^{-46} -2283 q^{-47} -9179 q^{-48} -3362 q^{-49} +2438 q^{-50} +5538 q^{-51} +1493 q^{-52} -2867 q^{-53} -2180 q^{-54} -533 q^{-55} +1685 q^{-56} +1111 q^{-57} -354 q^{-58} -528 q^{-59} -477 q^{-60} +247 q^{-61} +278 q^{-62} -6 q^{-63} -26 q^{-64} -111 q^{-65} +25 q^{-66} +36 q^{-67} -10 q^{-68} +6 q^{-69} -13 q^{-70} +5 q^{-71} +4 q^{-72} -4 q^{-73} + q^{-74} </math>|J5=<math>-q^{40}+5 q^{39}-5 q^{38}-10 q^{37}+16 q^{36}+7 q^{35}-5 q^{34}-8 q^{33}-34 q^{32}-29 q^{31}+90 q^{30}+149 q^{29}+4 q^{28}-230 q^{27}-408 q^{26}-195 q^{25}+497 q^{24}+1219 q^{23}+903 q^{22}-872 q^{21}-2763 q^{20}-2813 q^{19}+293 q^{18}+5211 q^{17}+7390 q^{16}+2485 q^{15}-7674 q^{14}-14877 q^{13}-10397 q^{12}+7132 q^{11}+25362 q^{10}+25619 q^9+298 q^8-34927 q^7-48831 q^6-19965 q^5+37974 q^4+77330 q^3+54320 q^2-26923 q-104297-102435 q^{-1} -3736 q^{-2} +120534 q^{-3} +158188 q^{-4} +55648 q^{-5} -118030 q^{-6} -211957 q^{-7} -124190 q^{-8} +91957 q^{-9} +253523 q^{-10} +201274 q^{-11} -44019 q^{-12} -275896 q^{-13} -275665 q^{-14} -19871 q^{-15} +276333 q^{-16} +338995 q^{-17} +90509 q^{-18} -257884 q^{-19} -385285 q^{-20} -159267 q^{-21} +225845 q^{-22} +414167 q^{-23} +219600 q^{-24} -187091 q^{-25} -427285 q^{-26} -269102 q^{-27} +146528 q^{-28} +429225 q^{-29} +307561 q^{-30} -107164 q^{-31} -422549 q^{-32} -337731 q^{-33} +68646 q^{-34} +410235 q^{-35} +361491 q^{-36} -29850 q^{-37} -390960 q^{-38} -380646 q^{-39} -12099 q^{-40} +363719 q^{-41} +394335 q^{-42} +57800 q^{-43} -325057 q^{-44} -399728 q^{-45} -106875 q^{-46} +273351 q^{-47} +392638 q^{-48} +155175 q^{-49} -208778 q^{-50} -368727 q^{-51} -196351 q^{-52} +135017 q^{-53} +325835 q^{-54} +223155 q^{-55} -59569 q^{-56} -265676 q^{-57} -229518 q^{-58} -7919 q^{-59} +194245 q^{-60} +213473 q^{-61} +58443 q^{-62} -121321 q^{-63} -178297 q^{-64} -86326 q^{-65} +57493 q^{-66} +131709 q^{-67} +91411 q^{-68} -10429 q^{-69} -83915 q^{-70} -79185 q^{-71} -16583 q^{-72} +43794 q^{-73} +57614 q^{-74} +26168 q^{-75} -15987 q^{-76} -35432 q^{-77} -24141 q^{-78} +1065 q^{-79} +17892 q^{-80} +16938 q^{-81} +4466 q^{-82} -6938 q^{-83} -9673 q^{-84} -4710 q^{-85} +1710 q^{-86} +4482 q^{-87} +3074 q^{-88} +140 q^{-89} -1652 q^{-90} -1582 q^{-91} -417 q^{-92} +523 q^{-93} +628 q^{-94} +230 q^{-95} -100 q^{-96} -196 q^{-97} -131 q^{-98} +32 q^{-99} +78 q^{-100} +10 q^{-101} -7 q^{-102} - q^{-103} -14 q^{-104} - q^{-105} +13 q^{-106} -5 q^{-107} -4 q^{-108} +4 q^{-109} - q^{-110} </math>|J6=Not Available|J7=Not Available}}
coloured_jones_4 = <math>q^{26}-5 q^{25}+5 q^{24}+10 q^{23}-16 q^{22}-2 q^{21}-25 q^{20}+52 q^{19}+82 q^{18}-106 q^{17}-97 q^{16}-176 q^{15}+289 q^{14}+590 q^{13}-173 q^{12}-644 q^{11}-1236 q^{10}+481 q^9+2406 q^8+1127 q^7-1182 q^6-4720 q^5-1616 q^4+4894 q^3+5955 q^2+1523 q-9653-8735 q^{-1} +3822 q^{-2} +12915 q^{-3} +10561 q^{-4} -11015 q^{-5} -18889 q^{-6} -4083 q^{-7} +16524 q^{-8} +23284 q^{-9} -5597 q^{-10} -26135 q^{-11} -15946 q^{-12} +13781 q^{-13} +33559 q^{-14} +3832 q^{-15} -27397 q^{-16} -26171 q^{-17} +7018 q^{-18} +38261 q^{-19} +12749 q^{-20} -24101 q^{-21} -32180 q^{-22} -530 q^{-23} +37954 q^{-24} +19437 q^{-25} -18052 q^{-26} -34142 q^{-27} -7995 q^{-28} +33219 q^{-29} +23876 q^{-30} -9405 q^{-31} -31723 q^{-32} -14982 q^{-33} +23705 q^{-34} +24646 q^{-35} +813 q^{-36} -23810 q^{-37} -18806 q^{-38} +11021 q^{-39} +19624 q^{-40} +8483 q^{-41} -12097 q^{-42} -16370 q^{-43} +500 q^{-44} +10327 q^{-45} +9553 q^{-46} -2283 q^{-47} -9179 q^{-48} -3362 q^{-49} +2438 q^{-50} +5538 q^{-51} +1493 q^{-52} -2867 q^{-53} -2180 q^{-54} -533 q^{-55} +1685 q^{-56} +1111 q^{-57} -354 q^{-58} -528 q^{-59} -477 q^{-60} +247 q^{-61} +278 q^{-62} -6 q^{-63} -26 q^{-64} -111 q^{-65} +25 q^{-66} +36 q^{-67} -10 q^{-68} +6 q^{-69} -13 q^{-70} +5 q^{-71} +4 q^{-72} -4 q^{-73} + q^{-74} </math> |

coloured_jones_5 = <math>-q^{40}+5 q^{39}-5 q^{38}-10 q^{37}+16 q^{36}+7 q^{35}-5 q^{34}-8 q^{33}-34 q^{32}-29 q^{31}+90 q^{30}+149 q^{29}+4 q^{28}-230 q^{27}-408 q^{26}-195 q^{25}+497 q^{24}+1219 q^{23}+903 q^{22}-872 q^{21}-2763 q^{20}-2813 q^{19}+293 q^{18}+5211 q^{17}+7390 q^{16}+2485 q^{15}-7674 q^{14}-14877 q^{13}-10397 q^{12}+7132 q^{11}+25362 q^{10}+25619 q^9+298 q^8-34927 q^7-48831 q^6-19965 q^5+37974 q^4+77330 q^3+54320 q^2-26923 q-104297-102435 q^{-1} -3736 q^{-2} +120534 q^{-3} +158188 q^{-4} +55648 q^{-5} -118030 q^{-6} -211957 q^{-7} -124190 q^{-8} +91957 q^{-9} +253523 q^{-10} +201274 q^{-11} -44019 q^{-12} -275896 q^{-13} -275665 q^{-14} -19871 q^{-15} +276333 q^{-16} +338995 q^{-17} +90509 q^{-18} -257884 q^{-19} -385285 q^{-20} -159267 q^{-21} +225845 q^{-22} +414167 q^{-23} +219600 q^{-24} -187091 q^{-25} -427285 q^{-26} -269102 q^{-27} +146528 q^{-28} +429225 q^{-29} +307561 q^{-30} -107164 q^{-31} -422549 q^{-32} -337731 q^{-33} +68646 q^{-34} +410235 q^{-35} +361491 q^{-36} -29850 q^{-37} -390960 q^{-38} -380646 q^{-39} -12099 q^{-40} +363719 q^{-41} +394335 q^{-42} +57800 q^{-43} -325057 q^{-44} -399728 q^{-45} -106875 q^{-46} +273351 q^{-47} +392638 q^{-48} +155175 q^{-49} -208778 q^{-50} -368727 q^{-51} -196351 q^{-52} +135017 q^{-53} +325835 q^{-54} +223155 q^{-55} -59569 q^{-56} -265676 q^{-57} -229518 q^{-58} -7919 q^{-59} +194245 q^{-60} +213473 q^{-61} +58443 q^{-62} -121321 q^{-63} -178297 q^{-64} -86326 q^{-65} +57493 q^{-66} +131709 q^{-67} +91411 q^{-68} -10429 q^{-69} -83915 q^{-70} -79185 q^{-71} -16583 q^{-72} +43794 q^{-73} +57614 q^{-74} +26168 q^{-75} -15987 q^{-76} -35432 q^{-77} -24141 q^{-78} +1065 q^{-79} +17892 q^{-80} +16938 q^{-81} +4466 q^{-82} -6938 q^{-83} -9673 q^{-84} -4710 q^{-85} +1710 q^{-86} +4482 q^{-87} +3074 q^{-88} +140 q^{-89} -1652 q^{-90} -1582 q^{-91} -417 q^{-92} +523 q^{-93} +628 q^{-94} +230 q^{-95} -100 q^{-96} -196 q^{-97} -131 q^{-98} +32 q^{-99} +78 q^{-100} +10 q^{-101} -7 q^{-102} - q^{-103} -14 q^{-104} - q^{-105} +13 q^{-106} -5 q^{-107} -4 q^{-108} +4 q^{-109} - q^{-110} </math> |
{{Computer Talk Header}}
coloured_jones_6 = |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 121]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[9, 19, 10, 18], X[3, 11, 4, 10],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 121]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[9, 19, 10, 18], X[3, 11, 4, 10],
X[17, 5, 18, 4], X[5, 12, 6, 13], X[11, 16, 12, 17],
X[17, 5, 18, 4], X[5, 12, 6, 13], X[11, 16, 12, 17],
X[19, 14, 20, 15], X[13, 8, 14, 9], X[15, 2, 16, 3]]</nowiki></pre></td></tr>
X[19, 14, 20, 15], X[13, 8, 14, 9], X[15, 2, 16, 3]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 121]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 121]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5,
3, -8, 2]</nowiki></pre></td></tr>
3, -8, 2]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 121]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 12, 20, 18, 16, 8, 2, 4, 14]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 121]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 121]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -2, 3, -2, 1, -2, 3, -2, 3, -2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 12, 20, 18, 16, 8, 2, 4, 14]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 121]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 121]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -2, 3, -2, 1, -2, 3, -2, 3, -2}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 121]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_121_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 121]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 121]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 11 27 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 121]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 121]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_121_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 121]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 121]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 11 27 2 3
-35 + -- - -- + -- + 27 t - 11 t + 2 t
-35 + -- - -- + -- + 27 t - 11 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 121]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 121]][z]</nowiki></code></td></tr>
1 + z + z + 2 z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183],
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + z + z + 2 z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183],
Knot[11, Alternating, 198], Knot[11, Alternating, 331]}</nowiki></pre></td></tr>
Knot[11, Alternating, 198], Knot[11, Alternating, 331]}</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 121]], KnotSignature[Knot[10, 121]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{115, -2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 121]], KnotSignature[Knot[10, 121]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 121]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 4 9 14 18 20 18 15 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{115, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 121]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 4 9 14 18 20 18 15 2
-10 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q
-10 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q
7 6 5 4 3 2 q
7 6 5 4 3 2 q
q q q q q q</nowiki></pre></td></tr>
q q q q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 121]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 121]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 2 2 2 4 3 3 -8 3 4 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 121]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 121]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -24 2 2 2 4 3 3 -8 3 4 4
-1 - q + --- - --- - --- + --- - --- + --- - q + -- - -- + -- -
-1 - q + --- - --- - --- + --- - --- + --- - q + -- - -- + -- -
22 20 18 16 14 12 6 4 2
22 20 18 16 14 12 6 4 2
Line 148: Line 182:
2 4 6
2 4 6
q + 3 q - q</nowiki></pre></td></tr>
q + 3 q - q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 121]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 4 2 4 4 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 121]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 4 2 4 4 4
1 - a + 2 a - a - a z + 3 a z - a z - z + a z + 2 a z -
1 - a + 2 a - a - a z + 3 a z - a z - z + a z + 2 a z -
6 4 2 6 4 6
6 4 2 6 4 6
a z + a z + a z</nowiki></pre></td></tr>
a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 121]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 2 2 4 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 121]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 7 2 2 4 2
1 + a + 2 a + a - a z - 3 a z - 2 a z - 3 a z - 7 a z -
1 + a + 2 a + a - a z - 3 a z - 2 a z - 3 a z - 7 a z -
Line 176: Line 218:
2 8 4 8 6 8 3 9 5 9
2 8 4 8 6 8 3 9 5 9
10 a z + 19 a z + 9 a z + 4 a z + 4 a z</nowiki></pre></td></tr>
10 a z + 19 a z + 9 a z + 4 a z + 4 a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 121]], Vassiliev[3][Knot[10, 121]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 121]], Vassiliev[3][Knot[10, 121]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 121]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 9 1 3 1 6 3 8 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 121]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 9 1 3 1 6 3 8 6
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4
Line 193: Line 243:
3 2 5 3
3 2 5 3
4 q t + q t</nowiki></pre></td></tr>
4 q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 121], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 4 4 10 32 17 59 106 7 170
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 121], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 4 4 10 32 17 59 106 7 170
-115 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
-115 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
22 21 20 19 18 17 16 15 14
22 21 20 19 18 17 16 15 14
Line 209: Line 263:
--- - -- + 82 q + 12 q - 41 q + 15 q + 5 q - 5 q + q
--- - -- + 82 q + 12 q - 41 q + 15 q + 5 q - 5 q + q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:02, 1 September 2005

10 120.gif

10_120

10 122.gif

10_122

10 121.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 121's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 121 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X7,20,8,1 X9,19,10,18 X3,11,4,10 X17,5,18,4 X5,12,6,13 X11,16,12,17 X19,14,20,15 X13,8,14,9 X15,2,16,3
Gauss code -1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5, 3, -8, 2
Dowker-Thistlethwaite code 6 10 12 20 18 16 8 2 4 14
Conway Notation [9*20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif

Length is 11, width is 4,

Braid index is 4

10 121 ML.gif 10 121 AP.gif
[{5, 3}, {2, 4}, {3, 1}, {6, 13}, {10, 5}, {7, 11}, {9, 6}, {8, 10}, {12, 9}, {11, 2}, {13, 7}, {4, 8}, {1, 12}]

[edit Notes on presentations of 10 121]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][-2]
Hyperbolic Volume 16.9749
A-Polynomial See Data:10 121/A-polynomial

[edit Notes for 10 121's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for 10 121's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-11 t^2+27 t-35+27 t^{-1} -11 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 115, -2 }
Jones polynomial [math]\displaystyle{ -q^2+5 q-10+15 q^{-1} -18 q^{-2} +20 q^{-3} -18 q^{-4} +14 q^{-5} -9 q^{-6} +4 q^{-7} - q^{-8} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4 a^6-z^2 a^6-a^6+z^6 a^4+2 z^4 a^4+3 z^2 a^4+2 a^4+z^6 a^2+z^4 a^2-z^2 a^2-a^2-z^4+1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^9-z^3 a^9+4 z^6 a^8-5 z^4 a^8+z^2 a^8+8 z^7 a^7-13 z^5 a^7+8 z^3 a^7-2 z a^7+9 z^8 a^6-14 z^6 a^6+9 z^4 a^6-3 z^2 a^6+a^6+4 z^9 a^5+9 z^7 a^5-28 z^5 a^5+19 z^3 a^5-3 z a^5+19 z^8 a^4-36 z^6 a^4+22 z^4 a^4-7 z^2 a^4+2 a^4+4 z^9 a^3+11 z^7 a^3-30 z^5 a^3+14 z^3 a^3-z a^3+10 z^8 a^2-13 z^6 a^2+3 z^4 a^2-3 z^2 a^2+a^2+10 z^7 a-15 z^5 a+4 z^3 a+5 z^6-5 z^4+1+z^5 a^{-1} }[/math]
The A2 invariant [math]\displaystyle{ -q^{24}+2 q^{22}-2 q^{20}-2 q^{18}+4 q^{16}-3 q^{14}+3 q^{12}-q^8+3 q^6-4 q^4+4 q^2-1- q^{-2} +3 q^{-4} - q^{-6} }[/math]
The G2 invariant [math]\displaystyle{ q^{128}-3 q^{126}+7 q^{124}-13 q^{122}+16 q^{120}-16 q^{118}+7 q^{116}+17 q^{114}-48 q^{112}+88 q^{110}-120 q^{108}+119 q^{106}-76 q^{104}-33 q^{102}+190 q^{100}-339 q^{98}+424 q^{96}-367 q^{94}+144 q^{92}+189 q^{90}-524 q^{88}+710 q^{86}-650 q^{84}+336 q^{82}+111 q^{80}-519 q^{78}+707 q^{76}-574 q^{74}+195 q^{72}+258 q^{70}-566 q^{68}+567 q^{66}-274 q^{64}-195 q^{62}+623 q^{60}-813 q^{58}+696 q^{56}-280 q^{54}-274 q^{52}+766 q^{50}-1016 q^{48}+928 q^{46}-540 q^{44}-20 q^{42}+548 q^{40}-851 q^{38}+845 q^{36}-520 q^{34}+30 q^{32}+417 q^{30}-637 q^{28}+517 q^{26}-141 q^{24}-311 q^{22}+622 q^{20}-634 q^{18}+356 q^{16}+94 q^{14}-517 q^{12}+736 q^{10}-680 q^8+389 q^6-3 q^4-331 q^2+497-471 q^{-2} +323 q^{-4} -115 q^{-6} -58 q^{-8} +155 q^{-10} -181 q^{-12} +143 q^{-14} -81 q^{-16} +29 q^{-18} +10 q^{-20} -25 q^{-22} +26 q^{-24} -20 q^{-26} +10 q^{-28} -4 q^{-30} + q^{-32} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a41, K11a183, K11a198, K11a331,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{110}{3} }[/math] [math]\displaystyle{ -\frac{14}{3} }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ -\frac{352}{3} }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{440}{3} }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ \frac{13471}{30} }[/math] [math]\displaystyle{ -\frac{1102}{15} }[/math] [math]\displaystyle{ \frac{9662}{45} }[/math] [math]\displaystyle{ -\frac{511}{18} }[/math] [math]\displaystyle{ \frac{511}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 10 121. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
5          1-1
3         4 4
1        61 -5
-1       94  5
-3      107   -3
-5     108    2
-7    810     2
-9   610      -4
-11  38       5
-13 16        -5
-15 3         3
-171          -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials