K11a198
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X12,4,13,3 X16,5,17,6 X14,7,15,8 X18,10,19,9 X2,12,3,11 X22,13,1,14 X6,15,7,16 X20,18,21,17 X10,20,11,19 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, 3, -8, 4, -11, 5, -10, 6, -2, 7, -4, 8, -3, 9, -5, 10, -9, 11, -7 |
| Dowker-Thistlethwaite code | 4 12 16 14 18 2 22 6 20 10 8 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^3-11 t^2+27 t-35+27 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^6+z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 115, 2 } |
| Jones polynomial | [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+17 q^3-18 q^2+18 q-15+11 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^6 a^{-2} +z^6-a^2 z^4+z^4 a^{-2} -2 z^4 a^{-4} +3 z^4-2 a^2 z^2-z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} +5 z^2-a^2- a^{-2} +3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+8 z^9 a^{-1} +5 z^9 a^{-3} +3 a^2 z^8+16 z^8 a^{-2} +10 z^8 a^{-4} +9 z^8+a^3 z^7-6 a z^7-12 z^7 a^{-1} +6 z^7 a^{-3} +11 z^7 a^{-5} -12 a^2 z^6-47 z^6 a^{-2} -12 z^6 a^{-4} +8 z^6 a^{-6} -39 z^6-4 a^3 z^5-5 a z^5-15 z^5 a^{-1} -32 z^5 a^{-3} -14 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+38 z^4 a^{-2} +z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +45 z^4+5 a^3 z^3+14 a z^3+25 z^3 a^{-1} +24 z^3 a^{-3} +6 z^3 a^{-5} -2 z^3 a^{-7} -8 a^2 z^2-12 z^2 a^{-2} +z^2 a^{-4} +2 z^2 a^{-6} -19 z^2-2 a^3 z-6 a z-8 z a^{-1} -5 z a^{-3} -z a^{-5} +a^2+ a^{-2} +3 }[/math] |
| The A2 invariant | Data:K11a198/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a198/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a198"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^3-11 t^2+27 t-35+27 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^6+z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 115, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+17 q^3-18 q^2+18 q-15+11 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^6 a^{-2} +z^6-a^2 z^4+z^4 a^{-2} -2 z^4 a^{-4} +3 z^4-2 a^2 z^2-z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} +5 z^2-a^2- a^{-2} +3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+8 z^9 a^{-1} +5 z^9 a^{-3} +3 a^2 z^8+16 z^8 a^{-2} +10 z^8 a^{-4} +9 z^8+a^3 z^7-6 a z^7-12 z^7 a^{-1} +6 z^7 a^{-3} +11 z^7 a^{-5} -12 a^2 z^6-47 z^6 a^{-2} -12 z^6 a^{-4} +8 z^6 a^{-6} -39 z^6-4 a^3 z^5-5 a z^5-15 z^5 a^{-1} -32 z^5 a^{-3} -14 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+38 z^4 a^{-2} +z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +45 z^4+5 a^3 z^3+14 a z^3+25 z^3 a^{-1} +24 z^3 a^{-3} +6 z^3 a^{-5} -2 z^3 a^{-7} -8 a^2 z^2-12 z^2 a^{-2} +z^2 a^{-4} +2 z^2 a^{-6} -19 z^2-2 a^3 z-6 a z-8 z a^{-1} -5 z a^{-3} -z a^{-5} +a^2+ a^{-2} +3 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_121, K11a41, K11a183, K11a331,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a198"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ 2 t^3-11 t^2+27 t-35+27 t^{-1} -11 t^{-2} +2 t^{-3} }[/math], [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4+17 q^3-18 q^2+18 q-15+11 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_121, K11a41, K11a183, K11a331,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a198. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



