10 121: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_121}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 121 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-4,5,-6,1,-2,9,-3,4,-7,6,-9,8,-10,7,-5,3,-8,2/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[K11a41]], [[K11a183]], [[K11a198]], [[K11a331]], | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>1</td><td> </td><td>-5</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>9</td><td bgcolor=yellow>4</td><td> </td><td> </td><td>5</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>10</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>10</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>10</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>10</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-4</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>5</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-5</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^7-5 q^6+5 q^5+15 q^4-41 q^3+12 q^2+82 q-115-20 q^{-1} +203 q^{-2} -175 q^{-3} -99 q^{-4} +312 q^{-5} -178 q^{-6} -179 q^{-7} +348 q^{-8} -129 q^{-9} -215 q^{-10} +291 q^{-11} -52 q^{-12} -186 q^{-13} +170 q^{-14} +7 q^{-15} -106 q^{-16} +59 q^{-17} +17 q^{-18} -32 q^{-19} +10 q^{-20} +4 q^{-21} -4 q^{-22} + q^{-23} </math> | |
|||
coloured_jones_3 = <math>-q^{15}+5 q^{14}-5 q^{13}-10 q^{12}+11 q^{11}+32 q^{10}-19 q^9-100 q^8+38 q^7+208 q^6+4 q^5-404 q^4-125 q^3+641 q^2+387 q-874-788 q^{-1} +1013 q^{-2} +1320 q^{-3} -1038 q^{-4} -1872 q^{-5} +896 q^{-6} +2402 q^{-7} -644 q^{-8} -2813 q^{-9} +294 q^{-10} +3110 q^{-11} +64 q^{-12} -3232 q^{-13} -449 q^{-14} +3233 q^{-15} +784 q^{-16} -3059 q^{-17} -1109 q^{-18} +2765 q^{-19} +1356 q^{-20} -2331 q^{-21} -1511 q^{-22} +1798 q^{-23} +1543 q^{-24} -1233 q^{-25} -1429 q^{-26} +710 q^{-27} +1184 q^{-28} -297 q^{-29} -866 q^{-30} +34 q^{-31} +556 q^{-32} +72 q^{-33} -296 q^{-34} -89 q^{-35} +134 q^{-36} +60 q^{-37} -54 q^{-38} -25 q^{-39} +18 q^{-40} +8 q^{-41} -5 q^{-42} -4 q^{-43} +4 q^{-44} - q^{-45} </math> | |
|||
coloured_jones_4 = <math>q^{26}-5 q^{25}+5 q^{24}+10 q^{23}-16 q^{22}-2 q^{21}-25 q^{20}+52 q^{19}+82 q^{18}-106 q^{17}-97 q^{16}-176 q^{15}+289 q^{14}+590 q^{13}-173 q^{12}-644 q^{11}-1236 q^{10}+481 q^9+2406 q^8+1127 q^7-1182 q^6-4720 q^5-1616 q^4+4894 q^3+5955 q^2+1523 q-9653-8735 q^{-1} +3822 q^{-2} +12915 q^{-3} +10561 q^{-4} -11015 q^{-5} -18889 q^{-6} -4083 q^{-7} +16524 q^{-8} +23284 q^{-9} -5597 q^{-10} -26135 q^{-11} -15946 q^{-12} +13781 q^{-13} +33559 q^{-14} +3832 q^{-15} -27397 q^{-16} -26171 q^{-17} +7018 q^{-18} +38261 q^{-19} +12749 q^{-20} -24101 q^{-21} -32180 q^{-22} -530 q^{-23} +37954 q^{-24} +19437 q^{-25} -18052 q^{-26} -34142 q^{-27} -7995 q^{-28} +33219 q^{-29} +23876 q^{-30} -9405 q^{-31} -31723 q^{-32} -14982 q^{-33} +23705 q^{-34} +24646 q^{-35} +813 q^{-36} -23810 q^{-37} -18806 q^{-38} +11021 q^{-39} +19624 q^{-40} +8483 q^{-41} -12097 q^{-42} -16370 q^{-43} +500 q^{-44} +10327 q^{-45} +9553 q^{-46} -2283 q^{-47} -9179 q^{-48} -3362 q^{-49} +2438 q^{-50} +5538 q^{-51} +1493 q^{-52} -2867 q^{-53} -2180 q^{-54} -533 q^{-55} +1685 q^{-56} +1111 q^{-57} -354 q^{-58} -528 q^{-59} -477 q^{-60} +247 q^{-61} +278 q^{-62} -6 q^{-63} -26 q^{-64} -111 q^{-65} +25 q^{-66} +36 q^{-67} -10 q^{-68} +6 q^{-69} -13 q^{-70} +5 q^{-71} +4 q^{-72} -4 q^{-73} + q^{-74} </math> | |
|||
coloured_jones_5 = <math>-q^{40}+5 q^{39}-5 q^{38}-10 q^{37}+16 q^{36}+7 q^{35}-5 q^{34}-8 q^{33}-34 q^{32}-29 q^{31}+90 q^{30}+149 q^{29}+4 q^{28}-230 q^{27}-408 q^{26}-195 q^{25}+497 q^{24}+1219 q^{23}+903 q^{22}-872 q^{21}-2763 q^{20}-2813 q^{19}+293 q^{18}+5211 q^{17}+7390 q^{16}+2485 q^{15}-7674 q^{14}-14877 q^{13}-10397 q^{12}+7132 q^{11}+25362 q^{10}+25619 q^9+298 q^8-34927 q^7-48831 q^6-19965 q^5+37974 q^4+77330 q^3+54320 q^2-26923 q-104297-102435 q^{-1} -3736 q^{-2} +120534 q^{-3} +158188 q^{-4} +55648 q^{-5} -118030 q^{-6} -211957 q^{-7} -124190 q^{-8} +91957 q^{-9} +253523 q^{-10} +201274 q^{-11} -44019 q^{-12} -275896 q^{-13} -275665 q^{-14} -19871 q^{-15} +276333 q^{-16} +338995 q^{-17} +90509 q^{-18} -257884 q^{-19} -385285 q^{-20} -159267 q^{-21} +225845 q^{-22} +414167 q^{-23} +219600 q^{-24} -187091 q^{-25} -427285 q^{-26} -269102 q^{-27} +146528 q^{-28} +429225 q^{-29} +307561 q^{-30} -107164 q^{-31} -422549 q^{-32} -337731 q^{-33} +68646 q^{-34} +410235 q^{-35} +361491 q^{-36} -29850 q^{-37} -390960 q^{-38} -380646 q^{-39} -12099 q^{-40} +363719 q^{-41} +394335 q^{-42} +57800 q^{-43} -325057 q^{-44} -399728 q^{-45} -106875 q^{-46} +273351 q^{-47} +392638 q^{-48} +155175 q^{-49} -208778 q^{-50} -368727 q^{-51} -196351 q^{-52} +135017 q^{-53} +325835 q^{-54} +223155 q^{-55} -59569 q^{-56} -265676 q^{-57} -229518 q^{-58} -7919 q^{-59} +194245 q^{-60} +213473 q^{-61} +58443 q^{-62} -121321 q^{-63} -178297 q^{-64} -86326 q^{-65} +57493 q^{-66} +131709 q^{-67} +91411 q^{-68} -10429 q^{-69} -83915 q^{-70} -79185 q^{-71} -16583 q^{-72} +43794 q^{-73} +57614 q^{-74} +26168 q^{-75} -15987 q^{-76} -35432 q^{-77} -24141 q^{-78} +1065 q^{-79} +17892 q^{-80} +16938 q^{-81} +4466 q^{-82} -6938 q^{-83} -9673 q^{-84} -4710 q^{-85} +1710 q^{-86} +4482 q^{-87} +3074 q^{-88} +140 q^{-89} -1652 q^{-90} -1582 q^{-91} -417 q^{-92} +523 q^{-93} +628 q^{-94} +230 q^{-95} -100 q^{-96} -196 q^{-97} -131 q^{-98} +32 q^{-99} +78 q^{-100} +10 q^{-101} -7 q^{-102} - q^{-103} -14 q^{-104} - q^{-105} +13 q^{-106} -5 q^{-107} -4 q^{-108} +4 q^{-109} - q^{-110} </math> | |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 121]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[9, 19, 10, 18], X[3, 11, 4, 10], |
|||
X[17, 5, 18, 4], X[5, 12, 6, 13], X[11, 16, 12, 17], |
|||
X[19, 14, 20, 15], X[13, 8, 14, 9], X[15, 2, 16, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 121]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5, |
|||
3, -8, 2]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 121]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 12, 20, 18, 16, 8, 2, 4, 14]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 121]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -2, 3, -2, 1, -2, 3, -2, 3, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 121]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 121]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_121_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 121]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 121]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 11 27 2 3 |
|||
-35 + -- - -- + -- + 27 t - 11 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 121]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + z + z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183], |
|||
Knot[11, Alternating, 198], Knot[11, Alternating, 331]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 121]], KnotSignature[Knot[10, 121]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{115, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 121]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 4 9 14 18 20 18 15 2 |
|||
-10 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q |
|||
7 6 5 4 3 2 q |
|||
q q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 121]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 121]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -24 2 2 2 4 3 3 -8 3 4 4 |
|||
-1 - q + --- - --- - --- + --- - --- + --- - q + -- - -- + -- - |
|||
22 20 18 16 14 12 6 4 2 |
|||
q q q q q q q q q |
|||
2 4 6 |
|||
q + 3 q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 121]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 4 2 4 4 4 |
|||
1 - a + 2 a - a - a z + 3 a z - a z - z + a z + 2 a z - |
|||
6 4 2 6 4 6 |
|||
a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 121]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 7 2 2 4 2 |
|||
1 + a + 2 a + a - a z - 3 a z - 2 a z - 3 a z - 7 a z - |
|||
6 2 8 2 3 3 3 5 3 7 3 9 3 |
|||
3 a z + a z + 4 a z + 14 a z + 19 a z + 8 a z - a z - |
|||
5 |
|||
4 2 4 4 4 6 4 8 4 z 5 |
|||
5 z + 3 a z + 22 a z + 9 a z - 5 a z + -- - 15 a z - |
|||
a |
|||
3 5 5 5 7 5 9 5 6 2 6 4 6 |
|||
30 a z - 28 a z - 13 a z + a z + 5 z - 13 a z - 36 a z - |
|||
6 6 8 6 7 3 7 5 7 7 7 |
|||
14 a z + 4 a z + 10 a z + 11 a z + 9 a z + 8 a z + |
|||
2 8 4 8 6 8 3 9 5 9 |
|||
10 a z + 19 a z + 9 a z + 4 a z + 4 a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 121]], Vassiliev[3][Knot[10, 121]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 121]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 9 1 3 1 6 3 8 6 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
|||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
|||
q q t q t q t q t q t q t q t |
|||
10 8 10 10 8 10 4 t 2 |
|||
----- + ----- + ----- + ----- + ---- + ---- + --- + 6 q t + q t + |
|||
9 3 7 3 7 2 5 2 5 3 q |
|||
q t q t q t q t q t q t |
|||
3 2 5 3 |
|||
4 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 121], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 4 4 10 32 17 59 106 7 170 |
|||
-115 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
|||
22 21 20 19 18 17 16 15 14 |
|||
q q q q q q q q q |
|||
186 52 291 215 129 348 179 178 312 99 175 |
|||
--- - --- + --- - --- - --- + --- - --- - --- + --- - -- - --- + |
|||
13 12 11 10 9 8 7 6 5 4 3 |
|||
q q q q q q q q q q q |
|||
203 20 2 3 4 5 6 7 |
|||
--- - -- + 82 q + 12 q - 41 q + 15 q + 5 q - 5 q + q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 121's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X7,20,8,1 X9,19,10,18 X3,11,4,10 X17,5,18,4 X5,12,6,13 X11,16,12,17 X19,14,20,15 X13,8,14,9 X15,2,16,3 |
Gauss code | -1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5, 3, -8, 2 |
Dowker-Thistlethwaite code | 6 10 12 20 18 16 8 2 4 14 |
Conway Notation | [9*20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{5, 3}, {2, 4}, {3, 1}, {6, 13}, {10, 5}, {7, 11}, {9, 6}, {8, 10}, {12, 9}, {11, 2}, {13, 7}, {4, 8}, {1, 12}] |
[edit Notes on presentations of 10 121]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 121"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X7,20,8,1 X9,19,10,18 X3,11,4,10 X17,5,18,4 X5,12,6,13 X11,16,12,17 X19,14,20,15 X13,8,14,9 X15,2,16,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5, 3, -8, 2 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 12 20 18 16 8 2 4 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[9*20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 3}, {2, 4}, {3, 1}, {6, 13}, {10, 5}, {7, 11}, {9, 6}, {8, 10}, {12, 9}, {11, 2}, {13, 7}, {4, 8}, {1, 12}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 121"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 115, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a41, K11a183, K11a198, K11a331,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 121"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a41, K11a183, K11a198, K11a331,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 121. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|