10 138: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_138}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 138 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,7,-6,-3,4,-2,5,-10,9,6,-7,-5,8,-9,10,-8/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
braid_index = 5 | |
|||
same_alexander = | |
|||
same_jones = [[K11n117]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{15}-5 q^{13}+7 q^{12}+2 q^{11}-17 q^{10}+16 q^9+8 q^8-29 q^7+19 q^6+16 q^5-34 q^4+13 q^3+22 q^2-30 q+4+23 q^{-1} -20 q^{-2} -4 q^{-3} +17 q^{-4} -8 q^{-5} -5 q^{-6} +7 q^{-7} - q^{-8} -2 q^{-9} + q^{-10} </math> | |
|||
coloured_jones_3 = <math>2 q^{29}-4 q^{28}+2 q^{26}+10 q^{25}-12 q^{24}-17 q^{23}+16 q^{22}+34 q^{21}-19 q^{20}-55 q^{19}+19 q^{18}+76 q^{17}-12 q^{16}-96 q^{15}+4 q^{14}+105 q^{13}+11 q^{12}-110 q^{11}-23 q^{10}+104 q^9+36 q^8-95 q^7-46 q^6+81 q^5+54 q^4-61 q^3-63 q^2+45 q+64-22 q^{-1} -65 q^{-2} +4 q^{-3} +56 q^{-4} +15 q^{-5} -47 q^{-6} -23 q^{-7} +29 q^{-8} +31 q^{-9} -18 q^{-10} -25 q^{-11} +4 q^{-12} +20 q^{-13} + q^{-14} -11 q^{-15} -4 q^{-16} +6 q^{-17} +2 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} </math> | |
|||
coloured_jones_4 = <math>q^{48}-5 q^{46}+11 q^{44}+3 q^{43}-6 q^{42}-29 q^{41}-7 q^{40}+56 q^{39}+34 q^{38}-17 q^{37}-113 q^{36}-58 q^{35}+145 q^{34}+140 q^{33}+4 q^{32}-253 q^{31}-201 q^{30}+215 q^{29}+311 q^{28}+107 q^{27}-367 q^{26}-400 q^{25}+200 q^{24}+440 q^{23}+259 q^{22}-376 q^{21}-547 q^{20}+120 q^{19}+456 q^{18}+371 q^{17}-302 q^{16}-582 q^{15}+38 q^{14}+376 q^{13}+414 q^{12}-193 q^{11}-538 q^{10}-31 q^9+257 q^8+413 q^7-72 q^6-448 q^5-96 q^4+114 q^3+378 q^2+57 q-315-140 q^{-1} -40 q^{-2} +285 q^{-3} +153 q^{-4} -145 q^{-5} -117 q^{-6} -156 q^{-7} +136 q^{-8} +159 q^{-9} +2 q^{-10} -25 q^{-11} -170 q^{-12} +78 q^{-14} +56 q^{-15} +59 q^{-16} -96 q^{-17} -46 q^{-18} -3 q^{-19} +26 q^{-20} +68 q^{-21} -21 q^{-22} -22 q^{-23} -23 q^{-24} -6 q^{-25} +32 q^{-26} +2 q^{-27} -9 q^{-29} -8 q^{-30} +7 q^{-31} + q^{-32} +2 q^{-33} - q^{-34} -2 q^{-35} + q^{-36} </math> | |
|||
coloured_jones_5 = <math>2 q^{71}-4 q^{70}+2 q^{67}+12 q^{66}+2 q^{65}-28 q^{64}-20 q^{63}+8 q^{62}+38 q^{61}+73 q^{60}+6 q^{59}-123 q^{58}-140 q^{57}-16 q^{56}+187 q^{55}+299 q^{54}+100 q^{53}-316 q^{52}-530 q^{51}-235 q^{50}+404 q^{49}+833 q^{48}+502 q^{47}-451 q^{46}-1189 q^{45}-861 q^{44}+414 q^{43}+1507 q^{42}+1294 q^{41}-244 q^{40}-1769 q^{39}-1743 q^{38}-q^{37}+1904 q^{36}+2127 q^{35}+318 q^{34}-1915 q^{33}-2422 q^{32}-619 q^{31}+1817 q^{30}+2580 q^{29}+893 q^{28}-1660 q^{27}-2628 q^{26}-1082 q^{25}+1461 q^{24}+2577 q^{23}+1219 q^{22}-1262 q^{21}-2476 q^{20}-1292 q^{19}+1064 q^{18}+2326 q^{17}+1350 q^{16}-856 q^{15}-2166 q^{14}-1398 q^{13}+639 q^{12}+1983 q^{11}+1437 q^{10}-384 q^9-1769 q^8-1486 q^7+117 q^6+1520 q^5+1487 q^4+173 q^3-1204 q^2-1465 q-441+865 q^{-1} +1334 q^{-2} +675 q^{-3} -484 q^{-4} -1144 q^{-5} -811 q^{-6} +128 q^{-7} +853 q^{-8} +845 q^{-9} +180 q^{-10} -542 q^{-11} -745 q^{-12} -375 q^{-13} +209 q^{-14} +569 q^{-15} +458 q^{-16} +29 q^{-17} -328 q^{-18} -402 q^{-19} -207 q^{-20} +113 q^{-21} +295 q^{-22} +237 q^{-23} +48 q^{-24} -133 q^{-25} -213 q^{-26} -127 q^{-27} +23 q^{-28} +123 q^{-29} +133 q^{-30} +53 q^{-31} -49 q^{-32} -93 q^{-33} -71 q^{-34} -9 q^{-35} +51 q^{-36} +60 q^{-37} +22 q^{-38} -11 q^{-39} -33 q^{-40} -30 q^{-41} -2 q^{-42} +19 q^{-43} +13 q^{-44} +6 q^{-45} -11 q^{-47} -6 q^{-48} +3 q^{-49} +2 q^{-50} + q^{-51} +2 q^{-52} - q^{-53} -2 q^{-54} + q^{-55} </math> | |
|||
coloured_jones_6 = <math>q^{99}-5 q^{97}+7 q^{95}+4 q^{94}-q^{92}-10 q^{91}-33 q^{90}-10 q^{89}+59 q^{88}+67 q^{87}+20 q^{86}-31 q^{85}-122 q^{84}-195 q^{83}-62 q^{82}+257 q^{81}+407 q^{80}+252 q^{79}-79 q^{78}-560 q^{77}-895 q^{76}-468 q^{75}+628 q^{74}+1434 q^{73}+1313 q^{72}+304 q^{71}-1360 q^{70}-2689 q^{69}-2062 q^{68}+516 q^{67}+3106 q^{66}+3836 q^{65}+2149 q^{64}-1635 q^{63}-5303 q^{62}-5388 q^{61}-1267 q^{60}+4189 q^{59}+7192 q^{58}+5816 q^{57}-106 q^{56}-7123 q^{55}-9375 q^{54}-4840 q^{53}+3324 q^{52}+9467 q^{51}+9864 q^{50}+3090 q^{49}-6812 q^{48}-11955 q^{47}-8532 q^{46}+850 q^{45}+9496 q^{44}+12299 q^{43}+6222 q^{42}-4911 q^{41}-12255 q^{40}-10591 q^{39}-1587 q^{38}+8003 q^{37}+12603 q^{36}+7896 q^{35}-2919 q^{34}-11135 q^{33}-10849 q^{32}-2970 q^{31}+6298 q^{30}+11702 q^{29}+8245 q^{28}-1516 q^{27}-9694 q^{26}-10261 q^{25}-3638 q^{24}+4811 q^{23}+10513 q^{22}+8180 q^{21}-286 q^{20}-8186 q^{19}-9566 q^{18}-4371 q^{17}+3130 q^{16}+9158 q^{15}+8220 q^{14}+1363 q^{13}-6217 q^{12}-8719 q^{11}-5424 q^{10}+830 q^9+7204 q^8+8087 q^7+3427 q^6-3442 q^5-7140 q^4-6256 q^3-1911 q^2+4286 q+7006+5123 q^{-1} -154 q^{-2} -4390 q^{-3} -5880 q^{-4} -4121 q^{-5} +780 q^{-6} +4481 q^{-7} +5297 q^{-8} +2493 q^{-9} -950 q^{-10} -3787 q^{-11} -4539 q^{-12} -1980 q^{-13} +1169 q^{-14} +3515 q^{-15} +3167 q^{-16} +1655 q^{-17} -857 q^{-18} -2896 q^{-19} -2648 q^{-20} -1220 q^{-21} +916 q^{-22} +1813 q^{-23} +2148 q^{-24} +1081 q^{-25} -601 q^{-26} -1432 q^{-27} -1556 q^{-28} -641 q^{-29} +27 q^{-30} +1024 q^{-31} +1156 q^{-32} +582 q^{-33} -26 q^{-34} -604 q^{-35} -600 q^{-36} -665 q^{-37} -45 q^{-38} +337 q^{-39} +442 q^{-40} +379 q^{-41} +118 q^{-42} -21 q^{-43} -382 q^{-44} -249 q^{-45} -127 q^{-46} +25 q^{-47} +135 q^{-48} +168 q^{-49} +188 q^{-50} -49 q^{-51} -62 q^{-52} -105 q^{-53} -77 q^{-54} -40 q^{-55} +26 q^{-56} +102 q^{-57} +21 q^{-58} +24 q^{-59} -13 q^{-60} -24 q^{-61} -39 q^{-62} -16 q^{-63} +24 q^{-64} +3 q^{-65} +14 q^{-66} +5 q^{-67} +3 q^{-68} -11 q^{-69} -8 q^{-70} +5 q^{-71} -2 q^{-72} +2 q^{-73} + q^{-74} +2 q^{-75} - q^{-76} -2 q^{-77} + q^{-78} </math> | |
|||
coloured_jones_7 = <math>2 q^{131}-4 q^{130}+10 q^{126}+4 q^{125}-4 q^{124}-16 q^{123}-22 q^{122}-4 q^{121}+12 q^{120}+34 q^{119}+78 q^{118}+53 q^{117}-55 q^{116}-161 q^{115}-201 q^{114}-82 q^{113}+110 q^{112}+332 q^{111}+519 q^{110}+367 q^{109}-196 q^{108}-861 q^{107}-1194 q^{106}-828 q^{105}+220 q^{104}+1498 q^{103}+2463 q^{102}+2111 q^{101}+138 q^{100}-2584 q^{99}-4616 q^{98}-4296 q^{97}-1200 q^{96}+3502 q^{95}+7564 q^{94}+8110 q^{93}+3737 q^{92}-3940 q^{91}-11278 q^{90}-13524 q^{89}-8126 q^{88}+3039 q^{87}+14879 q^{86}+20312 q^{85}+14871 q^{84}+11 q^{83}-17596 q^{82}-27866 q^{81}-23558 q^{80}-5459 q^{79}+18330 q^{78}+34791 q^{77}+33434 q^{76}+13450 q^{75}-16471 q^{74}-40128 q^{73}-43282 q^{72}-22929 q^{71}+11993 q^{70}+42776 q^{69}+51651 q^{68}+32875 q^{67}-5362 q^{66}-42614 q^{65}-57642 q^{64}-41859 q^{63}-2210 q^{62}+39922 q^{61}+60703 q^{60}+48891 q^{59}+9628 q^{58}-35597 q^{57}-61109 q^{56}-53422 q^{55}-15874 q^{54}+30643 q^{53}+59505 q^{52}+55554 q^{51}+20410 q^{50}-25991 q^{49}-56715 q^{48}-55711 q^{47}-23237 q^{46}+22058 q^{45}+53549 q^{44}+54696 q^{43}+24672 q^{42}-19075 q^{41}-50470 q^{40}-53065 q^{39}-25281 q^{38}+16697 q^{37}+47676 q^{36}+51393 q^{35}+25669 q^{34}-14603 q^{33}-45126 q^{32}-49896 q^{31}-26220 q^{30}+12340 q^{29}+42479 q^{28}+48603 q^{27}+27295 q^{26}-9483 q^{25}-39537 q^{24}-47428 q^{23}-28846 q^{22}+5877 q^{21}+35879 q^{20}+45981 q^{19}+30851 q^{18}-1327 q^{17}-31309 q^{16}-44046 q^{15}-32974 q^{14}-3902 q^{13}+25631 q^{12}+41104 q^{11}+34720 q^{10}+9706 q^9-18807 q^8-36959 q^7-35645 q^6-15403 q^5+11148 q^4+31224 q^3+35068 q^2+20477 q-2969-24086 q^{-1} -32665 q^{-2} -24040 q^{-3} -4890 q^{-4} +15793 q^{-5} +28117 q^{-6} +25535 q^{-7} +11601 q^{-8} -7124 q^{-9} -21699 q^{-10} -24446 q^{-11} -16263 q^{-12} -1023 q^{-13} +14079 q^{-14} +20880 q^{-15} +18220 q^{-16} +7466 q^{-17} -6217 q^{-18} -15283 q^{-19} -17356 q^{-20} -11524 q^{-21} -640 q^{-22} +8867 q^{-23} +14043 q^{-24} +12633 q^{-25} +5489 q^{-26} -2628 q^{-27} -9241 q^{-28} -11298 q^{-29} -7856 q^{-30} -2056 q^{-31} +4272 q^{-32} +8104 q^{-33} +7715 q^{-34} +4766 q^{-35} -93 q^{-36} -4413 q^{-37} -5942 q^{-38} -5309 q^{-39} -2389 q^{-40} +1154 q^{-41} +3337 q^{-42} +4322 q^{-43} +3255 q^{-44} +957 q^{-45} -1012 q^{-46} -2621 q^{-47} -2798 q^{-48} -1757 q^{-49} -543 q^{-50} +966 q^{-51} +1729 q^{-52} +1595 q^{-53} +1179 q^{-54} +141 q^{-55} -678 q^{-56} -979 q^{-57} -1080 q^{-58} -580 q^{-59} -48 q^{-60} +299 q^{-61} +691 q^{-62} +603 q^{-63} +327 q^{-64} +83 q^{-65} -282 q^{-66} -339 q^{-67} -312 q^{-68} -270 q^{-69} +2 q^{-70} +146 q^{-71} +203 q^{-72} +222 q^{-73} +72 q^{-74} +9 q^{-75} -48 q^{-76} -149 q^{-77} -99 q^{-78} -53 q^{-79} +6 q^{-80} +73 q^{-81} +40 q^{-82} +40 q^{-83} +37 q^{-84} -15 q^{-85} -27 q^{-86} -34 q^{-87} -22 q^{-88} +13 q^{-89} + q^{-90} +5 q^{-91} +16 q^{-92} +5 q^{-93} +2 q^{-94} -8 q^{-95} -8 q^{-96} +3 q^{-97} -2 q^{-99} +2 q^{-100} + q^{-101} +2 q^{-102} - q^{-103} -2 q^{-104} + q^{-105} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 138]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[16, 12, 17, 11], X[7, 15, 8, 14], X[15, 7, 16, 6], |
|||
X[20, 18, 1, 17], X[18, 13, 19, 14], X[12, 19, 13, 20]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 138]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 2, 7, -6, -3, 4, -2, 5, -10, 9, 6, -7, -5, 8, |
|||
-9, 10, -8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 138]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, -14, 2, 16, 18, -6, 20, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 138]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, 2, -1, 2, 3, 2, 2, -4, 3, -4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 138]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 138]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_138_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 138]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 138]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 8 2 3 |
|||
-7 + t - -- + - + 8 t - 5 t + t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 138]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - 3 z + z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 138]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 138]], KnotSignature[Knot[10, 138]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{35, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 138]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 4 2 3 4 5 |
|||
-5 + q - -- + - + 6 q - 6 q + 5 q - 4 q + 2 q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 138], Knot[11, NonAlternating, 117]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 138]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -8 -4 -2 4 6 8 10 12 14 16 20 |
|||
q + q + q - q - q + 2 q - q + q - q - q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 138]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 |
|||
-6 2 3 2 2 3 z 5 z 2 2 4 z |
|||
-3 + a - -- + -- + 2 a - 6 z - ---- + ---- + a z - 2 z - -- + |
|||
4 2 4 2 4 |
|||
a a a a a |
|||
4 6 |
|||
4 z z |
|||
---- + -- |
|||
2 2 |
|||
a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 138]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-6 2 3 2 2 z 2 z z 2 3 z 6 z |
|||
-3 - a - -- - -- - 2 a - --- - --- - - - a z + 12 z + ---- + ---- + |
|||
4 2 5 3 a 6 4 |
|||
a a a a a a |
|||
2 3 3 3 4 |
|||
10 z 2 2 3 z 5 z 8 z 3 4 5 z |
|||
----- + 5 a z + ---- + ---- + ---- + 6 a z - 12 z - ---- - |
|||
2 5 3 a 4 |
|||
a a a a |
|||
4 5 5 5 6 6 |
|||
13 z 2 4 z 6 z 14 z 5 6 3 z 3 z |
|||
----- - 4 a z + -- - ---- - ----- - 7 a z + z + ---- + ---- + |
|||
2 5 3 a 4 2 |
|||
a a a a a |
|||
7 7 8 |
|||
2 6 3 z 5 z 7 8 z |
|||
a z + ---- + ---- + 2 a z + z + -- |
|||
3 a 2 |
|||
a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 138]], Vassiliev[3][Knot[10, 138]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 138]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 3 1 2 3 q |
|||
4 q + 3 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
|||
7 4 5 3 3 3 3 2 2 q t t |
|||
q t q t q t q t q t |
|||
3 5 5 2 7 2 7 3 9 3 11 4 |
|||
3 q t + 3 q t + 2 q t + 3 q t + 2 q t + 2 q t + 2 q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 138], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 2 -8 7 5 8 17 4 20 23 2 |
|||
4 + q - -- - q + -- - -- - -- + -- - -- - -- + -- - 30 q + 22 q + |
|||
9 7 6 5 4 3 2 q |
|||
q q q q q q q |
|||
3 4 5 6 7 8 9 10 |
|||
13 q - 34 q + 16 q + 19 q - 29 q + 8 q + 16 q - 17 q + |
|||
11 12 13 15 |
|||
2 q + 7 q - 5 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:05, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 138's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X7,15,8,14 X15,7,16,6 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss code | 1, -4, 3, -1, 2, 7, -6, -3, 4, -2, 5, -10, 9, 6, -7, -5, 8, -9, 10, -8 |
Dowker-Thistlethwaite code | 4 8 10 -14 2 16 18 -6 20 12 |
Conway Notation | [211,211,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{2, 11}, {1, 7}, {10, 6}, {11, 9}, {8, 3}, {7, 10}, {5, 2}, {6, 4}, {3, 5}, {4, 8}, {9, 1}] |
[edit Notes on presentations of 10 138]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 138"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X7,15,8,14 X15,7,16,6 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, 7, -6, -3, 4, -2, 5, -10, 9, 6, -7, -5, 8, -9, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 -14 2 16 18 -6 20 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,211,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 11}, {1, 7}, {10, 6}, {11, 9}, {8, 3}, {7, 10}, {5, 2}, {6, 4}, {3, 5}, {4, 8}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 138"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n117,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 138"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n117,} |
Vassiliev invariants
V2 and V3: | (-3, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 138. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|