10 138
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 138's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X7,15,8,14 X15,7,16,6 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss code | 1, -4, 3, -1, 2, 7, -6, -3, 4, -2, 5, -10, 9, 6, -7, -5, 8, -9, 10, -8 |
Dowker-Thistlethwaite code | 4 8 10 -14 2 16 18 -6 20 12 |
Conway Notation | [211,211,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
![]() |
![]() [{2, 11}, {1, 7}, {10, 6}, {11, 9}, {8, 3}, {7, 10}, {5, 2}, {6, 4}, {3, 5}, {4, 8}, {9, 1}] |
[edit Notes on presentations of 10 138]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n117,}
Vassiliev invariants
V2 and V3: | (-3, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 138. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|