10 143: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 143 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,-3,5,-4,9,10,-2,-7,8,-9,3,-5,4,-6,7,-8,6/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=143|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,-3,5,-4,9,10,-2,-7,8,-9,3,-5,4,-6,7,-8,6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[8_10]], [[K11n106]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[8_10]], [[K11n106]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 70: | Line 37: | ||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>-2+2 q^{-1} +4 q^{-2} -8 q^{-3} +4 q^{-4} +11 q^{-5} -16 q^{-6} +2 q^{-7} +18 q^{-8} -21 q^{-9} - q^{-10} +21 q^{-11} -17 q^{-12} -4 q^{-13} +18 q^{-14} -10 q^{-15} -7 q^{-16} +12 q^{-17} -3 q^{-18} -6 q^{-19} +5 q^{-20} -2 q^{-22} + q^{-23} </math> | |
|||
coloured_jones_3 = <math>q^4-q^3-q^2-2 q+2+5 q^{-1} - q^{-2} -7 q^{-3} -6 q^{-4} +15 q^{-5} +12 q^{-6} -12 q^{-7} -27 q^{-8} +17 q^{-9} +33 q^{-10} -8 q^{-11} -49 q^{-12} +8 q^{-13} +50 q^{-14} +2 q^{-15} -59 q^{-16} -3 q^{-17} +56 q^{-18} +10 q^{-19} -53 q^{-20} -15 q^{-21} +48 q^{-22} +19 q^{-23} -40 q^{-24} -24 q^{-25} +30 q^{-26} +28 q^{-27} -19 q^{-28} -29 q^{-29} +8 q^{-30} +27 q^{-31} + q^{-32} -22 q^{-33} -6 q^{-34} +14 q^{-35} +9 q^{-36} -9 q^{-37} -7 q^{-38} +4 q^{-39} +5 q^{-40} -2 q^{-41} -2 q^{-42} +2 q^{-44} - q^{-45} </math> | |
|||
{{Display Coloured Jones|J2=<math>-2+2 q^{-1} +4 q^{-2} -8 q^{-3} +4 q^{-4} +11 q^{-5} -16 q^{-6} +2 q^{-7} +18 q^{-8} -21 q^{-9} - q^{-10} +21 q^{-11} -17 q^{-12} -4 q^{-13} +18 q^{-14} -10 q^{-15} -7 q^{-16} +12 q^{-17} -3 q^{-18} -6 q^{-19} +5 q^{-20} -2 q^{-22} + q^{-23} </math>|J3=<math>q^4-q^3-q^2-2 q+2+5 q^{-1} - q^{-2} -7 q^{-3} -6 q^{-4} +15 q^{-5} +12 q^{-6} -12 q^{-7} -27 q^{-8} +17 q^{-9} +33 q^{-10} -8 q^{-11} -49 q^{-12} +8 q^{-13} +50 q^{-14} +2 q^{-15} -59 q^{-16} -3 q^{-17} +56 q^{-18} +10 q^{-19} -53 q^{-20} -15 q^{-21} +48 q^{-22} +19 q^{-23} -40 q^{-24} -24 q^{-25} +30 q^{-26} +28 q^{-27} -19 q^{-28} -29 q^{-29} +8 q^{-30} +27 q^{-31} + q^{-32} -22 q^{-33} -6 q^{-34} +14 q^{-35} +9 q^{-36} -9 q^{-37} -7 q^{-38} +4 q^{-39} +5 q^{-40} -2 q^{-41} -2 q^{-42} +2 q^{-44} - q^{-45} </math>|J4=<math>-q^8+q^7+3 q^6-2 q^4-8 q^3-4 q^2+11 q+10+10 q^{-1} -18 q^{-2} -32 q^{-3} +5 q^{-4} +20 q^{-5} +52 q^{-6} +3 q^{-7} -67 q^{-8} -39 q^{-9} -8 q^{-10} +103 q^{-11} +71 q^{-12} -70 q^{-13} -95 q^{-14} -82 q^{-15} +125 q^{-16} +149 q^{-17} -36 q^{-18} -123 q^{-19} -159 q^{-20} +115 q^{-21} +197 q^{-22} +3 q^{-23} -116 q^{-24} -208 q^{-25} +95 q^{-26} +211 q^{-27} +24 q^{-28} -95 q^{-29} -222 q^{-30} +72 q^{-31} +194 q^{-32} +39 q^{-33} -60 q^{-34} -213 q^{-35} +34 q^{-36} +156 q^{-37} +58 q^{-38} -8 q^{-39} -181 q^{-40} -15 q^{-41} +89 q^{-42} +63 q^{-43} +54 q^{-44} -119 q^{-45} -45 q^{-46} +12 q^{-47} +35 q^{-48} +87 q^{-49} -45 q^{-50} -33 q^{-51} -33 q^{-52} -8 q^{-53} +69 q^{-54} - q^{-55} -28 q^{-57} -28 q^{-58} +31 q^{-59} +5 q^{-60} +13 q^{-61} -9 q^{-62} -19 q^{-63} +10 q^{-64} - q^{-65} +7 q^{-66} -7 q^{-68} +3 q^{-69} - q^{-70} +2 q^{-71} -2 q^{-73} + q^{-74} </math>|J5=<math>-2 q^{11}+4 q^9+5 q^8+q^7-3 q^6-16 q^5-14 q^4+5 q^3+25 q^2+31 q+15-28 q^{-1} -65 q^{-2} -51 q^{-3} +15 q^{-4} +91 q^{-5} +106 q^{-6} +38 q^{-7} -93 q^{-8} -181 q^{-9} -121 q^{-10} +72 q^{-11} +225 q^{-12} +237 q^{-13} +25 q^{-14} -271 q^{-15} -363 q^{-16} -125 q^{-17} +238 q^{-18} +474 q^{-19} +293 q^{-20} -206 q^{-21} -562 q^{-22} -419 q^{-23} +104 q^{-24} +609 q^{-25} +571 q^{-26} -35 q^{-27} -625 q^{-28} -648 q^{-29} -73 q^{-30} +618 q^{-31} +736 q^{-32} +121 q^{-33} -599 q^{-34} -748 q^{-35} -193 q^{-36} +571 q^{-37} +786 q^{-38} +211 q^{-39} -549 q^{-40} -772 q^{-41} -244 q^{-42} +513 q^{-43} +770 q^{-44} +268 q^{-45} -481 q^{-46} -745 q^{-47} -293 q^{-48} +420 q^{-49} +713 q^{-50} +330 q^{-51} -344 q^{-52} -664 q^{-53} -362 q^{-54} +243 q^{-55} +587 q^{-56} +391 q^{-57} -127 q^{-58} -486 q^{-59} -399 q^{-60} +12 q^{-61} +359 q^{-62} +373 q^{-63} +92 q^{-64} -220 q^{-65} -316 q^{-66} -159 q^{-67} +89 q^{-68} +227 q^{-69} +180 q^{-70} +19 q^{-71} -125 q^{-72} -161 q^{-73} -84 q^{-74} +35 q^{-75} +111 q^{-76} +99 q^{-77} +33 q^{-78} -50 q^{-79} -89 q^{-80} -59 q^{-81} +3 q^{-82} +52 q^{-83} +61 q^{-84} +25 q^{-85} -21 q^{-86} -43 q^{-87} -33 q^{-88} - q^{-89} +28 q^{-90} +23 q^{-91} +8 q^{-92} -7 q^{-93} -18 q^{-94} -10 q^{-95} +5 q^{-96} +8 q^{-97} +2 q^{-98} +3 q^{-99} -2 q^{-100} -6 q^{-101} + q^{-102} +3 q^{-103} - q^{-104} + q^{-106} -2 q^{-107} +2 q^{-109} - q^{-110} </math>|J6=<math>q^{20}-q^{19}-q^{18}-q^{15}-3 q^{14}+7 q^{13}+5 q^{12}+4 q^{11}+4 q^{10}-4 q^9-18 q^8-33 q^7-6 q^6+15 q^5+36 q^4+59 q^3+50 q^2-15 q-107-112 q^{-1} -82 q^{-2} -3 q^{-3} +144 q^{-4} +254 q^{-5} +196 q^{-6} -41 q^{-7} -230 q^{-8} -366 q^{-9} -356 q^{-10} -31 q^{-11} +419 q^{-12} +653 q^{-13} +447 q^{-14} +29 q^{-15} -539 q^{-16} -989 q^{-17} -737 q^{-18} +86 q^{-19} +950 q^{-20} +1223 q^{-21} +885 q^{-22} -138 q^{-23} -1415 q^{-24} -1719 q^{-25} -862 q^{-26} +660 q^{-27} +1756 q^{-28} +1972 q^{-29} +820 q^{-30} -1277 q^{-31} -2417 q^{-32} -1957 q^{-33} -92 q^{-34} +1760 q^{-35} +2741 q^{-36} +1817 q^{-37} -762 q^{-38} -2614 q^{-39} -2691 q^{-40} -811 q^{-41} +1440 q^{-42} +3028 q^{-43} +2439 q^{-44} -286 q^{-45} -2512 q^{-46} -2979 q^{-47} -1211 q^{-48} +1127 q^{-49} +3030 q^{-50} +2685 q^{-51} -21 q^{-52} -2365 q^{-53} -3025 q^{-54} -1361 q^{-55} +927 q^{-56} +2952 q^{-57} +2749 q^{-58} +139 q^{-59} -2220 q^{-60} -2991 q^{-61} -1457 q^{-62} +718 q^{-63} +2805 q^{-64} +2765 q^{-65} +380 q^{-66} -1936 q^{-67} -2874 q^{-68} -1619 q^{-69} +323 q^{-70} +2445 q^{-71} +2712 q^{-72} +792 q^{-73} -1347 q^{-74} -2518 q^{-75} -1786 q^{-76} -317 q^{-77} +1729 q^{-78} +2413 q^{-79} +1239 q^{-80} -466 q^{-81} -1774 q^{-82} -1699 q^{-83} -971 q^{-84} +719 q^{-85} +1691 q^{-86} +1368 q^{-87} +374 q^{-88} -741 q^{-89} -1140 q^{-90} -1207 q^{-91} -177 q^{-92} +689 q^{-93} +949 q^{-94} +700 q^{-95} +113 q^{-96} -309 q^{-97} -838 q^{-98} -494 q^{-99} -77 q^{-100} +266 q^{-101} +418 q^{-102} +366 q^{-103} +251 q^{-104} -249 q^{-105} -256 q^{-106} -258 q^{-107} -134 q^{-108} -7 q^{-109} +152 q^{-110} +295 q^{-111} +53 q^{-112} +43 q^{-113} -84 q^{-114} -122 q^{-115} -154 q^{-116} -55 q^{-117} +112 q^{-118} +40 q^{-119} +103 q^{-120} +41 q^{-121} +3 q^{-122} -89 q^{-123} -74 q^{-124} +13 q^{-125} -22 q^{-126} +41 q^{-127} +34 q^{-128} +40 q^{-129} -22 q^{-130} -30 q^{-131} +6 q^{-132} -25 q^{-133} +3 q^{-134} +6 q^{-135} +22 q^{-136} -4 q^{-137} -8 q^{-138} +9 q^{-139} -9 q^{-140} -2 q^{-141} -2 q^{-142} +8 q^{-143} -2 q^{-144} -4 q^{-145} +5 q^{-146} -2 q^{-147} - q^{-149} +2 q^{-150} -2 q^{-152} + q^{-153} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>-q^8+q^7+3 q^6-2 q^4-8 q^3-4 q^2+11 q+10+10 q^{-1} -18 q^{-2} -32 q^{-3} +5 q^{-4} +20 q^{-5} +52 q^{-6} +3 q^{-7} -67 q^{-8} -39 q^{-9} -8 q^{-10} +103 q^{-11} +71 q^{-12} -70 q^{-13} -95 q^{-14} -82 q^{-15} +125 q^{-16} +149 q^{-17} -36 q^{-18} -123 q^{-19} -159 q^{-20} +115 q^{-21} +197 q^{-22} +3 q^{-23} -116 q^{-24} -208 q^{-25} +95 q^{-26} +211 q^{-27} +24 q^{-28} -95 q^{-29} -222 q^{-30} +72 q^{-31} +194 q^{-32} +39 q^{-33} -60 q^{-34} -213 q^{-35} +34 q^{-36} +156 q^{-37} +58 q^{-38} -8 q^{-39} -181 q^{-40} -15 q^{-41} +89 q^{-42} +63 q^{-43} +54 q^{-44} -119 q^{-45} -45 q^{-46} +12 q^{-47} +35 q^{-48} +87 q^{-49} -45 q^{-50} -33 q^{-51} -33 q^{-52} -8 q^{-53} +69 q^{-54} - q^{-55} -28 q^{-57} -28 q^{-58} +31 q^{-59} +5 q^{-60} +13 q^{-61} -9 q^{-62} -19 q^{-63} +10 q^{-64} - q^{-65} +7 q^{-66} -7 q^{-68} +3 q^{-69} - q^{-70} +2 q^{-71} -2 q^{-73} + q^{-74} </math> | |
|||
coloured_jones_5 = <math>-2 q^{11}+4 q^9+5 q^8+q^7-3 q^6-16 q^5-14 q^4+5 q^3+25 q^2+31 q+15-28 q^{-1} -65 q^{-2} -51 q^{-3} +15 q^{-4} +91 q^{-5} +106 q^{-6} +38 q^{-7} -93 q^{-8} -181 q^{-9} -121 q^{-10} +72 q^{-11} +225 q^{-12} +237 q^{-13} +25 q^{-14} -271 q^{-15} -363 q^{-16} -125 q^{-17} +238 q^{-18} +474 q^{-19} +293 q^{-20} -206 q^{-21} -562 q^{-22} -419 q^{-23} +104 q^{-24} +609 q^{-25} +571 q^{-26} -35 q^{-27} -625 q^{-28} -648 q^{-29} -73 q^{-30} +618 q^{-31} +736 q^{-32} +121 q^{-33} -599 q^{-34} -748 q^{-35} -193 q^{-36} +571 q^{-37} +786 q^{-38} +211 q^{-39} -549 q^{-40} -772 q^{-41} -244 q^{-42} +513 q^{-43} +770 q^{-44} +268 q^{-45} -481 q^{-46} -745 q^{-47} -293 q^{-48} +420 q^{-49} +713 q^{-50} +330 q^{-51} -344 q^{-52} -664 q^{-53} -362 q^{-54} +243 q^{-55} +587 q^{-56} +391 q^{-57} -127 q^{-58} -486 q^{-59} -399 q^{-60} +12 q^{-61} +359 q^{-62} +373 q^{-63} +92 q^{-64} -220 q^{-65} -316 q^{-66} -159 q^{-67} +89 q^{-68} +227 q^{-69} +180 q^{-70} +19 q^{-71} -125 q^{-72} -161 q^{-73} -84 q^{-74} +35 q^{-75} +111 q^{-76} +99 q^{-77} +33 q^{-78} -50 q^{-79} -89 q^{-80} -59 q^{-81} +3 q^{-82} +52 q^{-83} +61 q^{-84} +25 q^{-85} -21 q^{-86} -43 q^{-87} -33 q^{-88} - q^{-89} +28 q^{-90} +23 q^{-91} +8 q^{-92} -7 q^{-93} -18 q^{-94} -10 q^{-95} +5 q^{-96} +8 q^{-97} +2 q^{-98} +3 q^{-99} -2 q^{-100} -6 q^{-101} + q^{-102} +3 q^{-103} - q^{-104} + q^{-106} -2 q^{-107} +2 q^{-109} - q^{-110} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{20}-q^{19}-q^{18}-q^{15}-3 q^{14}+7 q^{13}+5 q^{12}+4 q^{11}+4 q^{10}-4 q^9-18 q^8-33 q^7-6 q^6+15 q^5+36 q^4+59 q^3+50 q^2-15 q-107-112 q^{-1} -82 q^{-2} -3 q^{-3} +144 q^{-4} +254 q^{-5} +196 q^{-6} -41 q^{-7} -230 q^{-8} -366 q^{-9} -356 q^{-10} -31 q^{-11} +419 q^{-12} +653 q^{-13} +447 q^{-14} +29 q^{-15} -539 q^{-16} -989 q^{-17} -737 q^{-18} +86 q^{-19} +950 q^{-20} +1223 q^{-21} +885 q^{-22} -138 q^{-23} -1415 q^{-24} -1719 q^{-25} -862 q^{-26} +660 q^{-27} +1756 q^{-28} +1972 q^{-29} +820 q^{-30} -1277 q^{-31} -2417 q^{-32} -1957 q^{-33} -92 q^{-34} +1760 q^{-35} +2741 q^{-36} +1817 q^{-37} -762 q^{-38} -2614 q^{-39} -2691 q^{-40} -811 q^{-41} +1440 q^{-42} +3028 q^{-43} +2439 q^{-44} -286 q^{-45} -2512 q^{-46} -2979 q^{-47} -1211 q^{-48} +1127 q^{-49} +3030 q^{-50} +2685 q^{-51} -21 q^{-52} -2365 q^{-53} -3025 q^{-54} -1361 q^{-55} +927 q^{-56} +2952 q^{-57} +2749 q^{-58} +139 q^{-59} -2220 q^{-60} -2991 q^{-61} -1457 q^{-62} +718 q^{-63} +2805 q^{-64} +2765 q^{-65} +380 q^{-66} -1936 q^{-67} -2874 q^{-68} -1619 q^{-69} +323 q^{-70} +2445 q^{-71} +2712 q^{-72} +792 q^{-73} -1347 q^{-74} -2518 q^{-75} -1786 q^{-76} -317 q^{-77} +1729 q^{-78} +2413 q^{-79} +1239 q^{-80} -466 q^{-81} -1774 q^{-82} -1699 q^{-83} -971 q^{-84} +719 q^{-85} +1691 q^{-86} +1368 q^{-87} +374 q^{-88} -741 q^{-89} -1140 q^{-90} -1207 q^{-91} -177 q^{-92} +689 q^{-93} +949 q^{-94} +700 q^{-95} +113 q^{-96} -309 q^{-97} -838 q^{-98} -494 q^{-99} -77 q^{-100} +266 q^{-101} +418 q^{-102} +366 q^{-103} +251 q^{-104} -249 q^{-105} -256 q^{-106} -258 q^{-107} -134 q^{-108} -7 q^{-109} +152 q^{-110} +295 q^{-111} +53 q^{-112} +43 q^{-113} -84 q^{-114} -122 q^{-115} -154 q^{-116} -55 q^{-117} +112 q^{-118} +40 q^{-119} +103 q^{-120} +41 q^{-121} +3 q^{-122} -89 q^{-123} -74 q^{-124} +13 q^{-125} -22 q^{-126} +41 q^{-127} +34 q^{-128} +40 q^{-129} -22 q^{-130} -30 q^{-131} +6 q^{-132} -25 q^{-133} +3 q^{-134} +6 q^{-135} +22 q^{-136} -4 q^{-137} -8 q^{-138} +9 q^{-139} -9 q^{-140} -2 q^{-141} -2 q^{-142} +8 q^{-143} -2 q^{-144} -4 q^{-145} +5 q^{-146} -2 q^{-147} - q^{-149} +2 q^{-150} -2 q^{-152} + q^{-153} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 143]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 143]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19], |
X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19], |
||
X[19, 12, 20, 13], X[13, 8, 14, 9], X[2, 10, 3, 9]]</nowiki></ |
X[19, 12, 20, 13], X[13, 8, 14, 9], X[2, 10, 3, 9]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 143]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 143]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, -3, 5, -4, 9, 10, -2, -7, 8, -9, 3, -5, 4, -6, |
|||
7, -8, 6]</nowiki></ |
7, -8, 6]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 143]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 143]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 143]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, -14, -16, 2, -18, -8, -6, -20, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 143]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -2, 1, 1, 1, -2, -2}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 143]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_143_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 143]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 143]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 143]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 143]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_143_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 143]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 143]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 6 2 3 |
|||
-7 + t - -- + - + 6 t - 3 t + t |
-7 + t - -- + - + 6 t - 3 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 143]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 143]][z]</nowiki></code></td></tr> |
|||
1 + 3 z + 3 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 3 z + 3 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 143]], KnotSignature[Knot[10, 143]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{27, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 2 3 4 5 5 3 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 10], Knot[10, 143], Knot[11, NonAlternating, 106]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 143]], KnotSignature[Knot[10, 143]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{27, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 143]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 2 3 4 5 5 3 3 |
|||
-1 - q + -- - -- + -- - -- + -- - -- + - |
-1 - q + -- - -- + -- - -- + -- - -- + - |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></ |
q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 143]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 143]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 143]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -24 -20 -16 -14 -12 2 2 -2 |
|||
-1 - q - q + q - q + q + -- + -- + q |
-1 - q - q + q - q + q + -- + -- + q |
||
8 6 |
8 6 |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 143]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 143]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 2 2 4 2 6 2 2 4 4 4 6 4 |
|||
3 a - 2 a - 2 a z + 8 a z - 3 a z - a z + 5 a z - a z + |
3 a - 2 a - 2 a z + 8 a z - 3 a z - a z + 5 a z - a z + |
||
4 6 |
4 6 |
||
a z</nowiki></ |
a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 143]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 143]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 3 5 7 9 2 2 |
|||
3 a + 2 a - a z - 3 a z - 5 a z - 2 a z + a z - 4 a z - |
3 a + 2 a - a z - 3 a z - 5 a z - 2 a z + a z - 4 a z - |
||
Line 164: | Line 205: | ||
5 7 7 7 4 8 6 8 |
5 7 7 7 4 8 6 8 |
||
3 a z + 2 a z + a z + a z</nowiki></ |
3 a z + 2 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 143]], Vassiliev[3][Knot[10, 143]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 143]], Vassiliev[3][Knot[10, 143]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 143]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, -5}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 143]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 2 1 1 1 2 1 2 2 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
||
Line 178: | Line 227: | ||
----- + ----- + ----- + ----- + ---- + ---- + q t |
----- + ----- + ----- + ----- + ---- + ---- + q t |
||
9 3 7 3 7 2 5 2 5 3 |
9 3 7 3 7 2 5 2 5 3 |
||
q t q t q t q t q t q t</nowiki></ |
q t q t q t q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 143], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 143], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 2 5 6 3 12 7 10 18 4 17 |
|||
-2 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
-2 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
||
22 20 19 18 17 16 15 14 13 12 |
22 20 19 18 17 16 15 14 13 12 |
||
Line 189: | Line 242: | ||
--- - q - -- + -- + -- - -- + -- + -- - -- + -- + - |
--- - q - -- + -- + -- - -- + -- + -- - -- + -- + - |
||
11 9 8 7 6 5 4 3 2 q |
11 9 8 7 6 5 4 3 2 q |
||
q q q q q q q q q</nowiki></ |
q q q q q q q q q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 143's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, -3, 5, -4, 9, 10, -2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6 |
Dowker-Thistlethwaite code | 4 10 -14 -16 2 -18 -8 -6 -20 -12 |
Conway Notation | [31,3,21-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 8}, {2, 4}, {1, 3}, {13, 9}, {8, 10}, {9, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 7}, {6, 13}, {12, 2}, {7, 1}] |
[edit Notes on presentations of 10 143]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 143"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -3, 5, -4, 9, 10, -2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 -14 -16 2 -18 -8 -6 -20 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31,3,21-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 8}, {2, 4}, {1, 3}, {13, 9}, {8, 10}, {9, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 7}, {6, 13}, {12, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 143"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_10, K11n106,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 143"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_10, K11n106,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 143. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|