8 10

From Knot Atlas
Jump to navigationJump to search

8 9.gif

8_9

8 11.gif

8_11

8 10.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 10 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,1,12,16 X15,11,16,10 X7283
Gauss code -1, 8, -2, 1, -4, 5, -8, 2, -3, 7, -6, 4, -5, 3, -7, 6
Dowker-Thistlethwaite code 4 8 12 2 14 16 6 10
Conway Notation [3,21,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

8 10 ML.gif 8 10 AP.gif
[{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {1, 3}, {11, 2}, {10, 1}]

[edit Notes on presentations of 8 10]

Knot 8_10.
A graph, knot 8_10.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-8]
Hyperbolic Volume 8.65115
A-Polynomial See Data:8 10/A-polynomial

[edit Notes for 8 10's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 8 10's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_143, K11n106,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (3, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 8 10. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
13        1-1
11       1 1
9      31 -2
7     21  1
5    23   1
3   32    1
1  13     2
-1 12      -1
-3 1       1
-51        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials