8 9

From Knot Atlas
Jump to navigationJump to search

8 8.gif

8_8

8 10.gif

8_10

8 9.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 9 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X14,8,15,7 X10,3,11,4 X2,13,3,14 X12,5,13,6 X4,11,5,12 X16,10,1,9 X8,16,9,15
Gauss code 1, -4, 3, -6, 5, -1, 2, -8, 7, -3, 6, -5, 4, -2, 8, -7
Dowker-Thistlethwaite code 6 10 12 14 16 4 2 8
Conway Notation [3113]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif

Length is 8, width is 3,

Braid index is 3

8 9 ML.gif 8 9 AP.gif
[{2, 10}, {1, 5}, {9, 4}, {10, 6}, {5, 3}, {4, 2}, {3, 7}, {6, 8}, {7, 9}, {8, 1}]

[edit Notes on presentations of 8 9]

Knot 8_9.
A graph, knot 8_9.

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 1
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-5]
Hyperbolic Volume 7.58818
A-Polynomial See Data:8 9/A-polynomial

[edit Notes for 8 9's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 9's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_155, K11n37,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234χ
9        11
7       1 -1
5      21 1
3     21  -1
1    32   1
-1   23    1
-3  12     -1
-5 12      1
-7 1       -1
-91        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials