T(5,4): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(30 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- Script generated - do not edit! -->
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit!

<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- TorusKnot[5, 4] -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. -->

<!-- -->
<span id="top"></span>
<!-- -->

<!-- WARNING! WARNING! WARNING!
{{TorusKnotsNavigation|T(7,3)|T(15,2)}}
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit!

<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page.
{{:Further T(5,4) views}}
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately.

<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. -->
[[Planar Diagrams|Planar Diagram]]: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\
<!-- -->
{{Torus Knot Page|
m = 5 |
n = 4 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/14,15,-3,-5,-7,10,11,12,-15,-2,-4,7,8,9,-12,-14,-1,4,5,6,-9,-11,-13,1,2,3,-6,-8,-10,13/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
same_alexander = |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>27</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>21</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>13</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>11</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table> |
coloured_jones_2 = <math>q^{39}-q^{38}+q^{36}-q^{35}+q^{33}-q^{32}+q^{30}-q^{29}-q^{26}-q^{23}+q^{18}+q^{15}+q^{12}</math> |
coloured_jones_3 = |
coloured_jones_4 = |
coloured_jones_5 = |
coloured_jones_6 = |
coloured_jones_7 = |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[5, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>15</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>TubePlot[TorusKnot[5, 4]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:T(5,4).jpg]]</td></tr><tr valign=top><td><tt><font color=blue>Out[3]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[5, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26],
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\
X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20],
22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\
X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14],
X[16, 2, 17, 1] X[9, 3, 10, 2]
X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30],

<table border=0><tr align=center>
<td>
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg"
border=0 alt="T(m,n)"><br><font size=-2>TubePlot</font></a>
</td>
<td>
<h1>&nbsp;&nbsp; The m (-1 + n)-Crossing Torus Knot T(m,n)</h1>
Include[$knotaka.html]
<p>Visit <a class=external
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s
page</a> at <a class=external
href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno
tilus</a>!
<p><a href="../Manual/Acknowledgement.html">Acknowledgement</a>
</td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/GaussCode.html">Gauss Code</a>: </td>
<td><em>{PD[TorusKnot[m, n]]}</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/BR.html">Braid Representative</a>: </td>
<td>&nbsp;&nbsp;&nbsp;</td>
<td>
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML]
</td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>:
</td>
<td><em>PolyPrint[1, t]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: </td>
<td><em>PolyPrint[1, z]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td>Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
</td>
<td><em>{ToString[Knot[0, 1], FormatType -> HTMLForm]<>, <>
X[16, 2, 17, 1], X[9, 3, 10, 2]]</nowiki></pre></td></tr>
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm]<>, <>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[5, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12,
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm]<>, ...}</em></td>
-14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[5, 4]]</nowiki></pre></td></tr>
</tr></table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[5, 4]][t]</nowiki></pre></td></tr>
<p><table><tr align=left valign=top>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -2 2 5 6
<td>
-1 + t - t + t + t - t + t</nowiki></pre></td></tr>
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[5, 4]][z]</nowiki></pre></td></tr>
</td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
<td><em>{1, 0}</em></td>
1 + 15 z + 56 z + 77 z + 44 z + 11 z + z</nowiki></pre></td></tr>
</tr></table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<p><table><tr align=left valign=top>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[5, 4]], KnotSignature[TorusKnot[5, 4]]}</nowiki></pre></td></tr>
<td><a href="../Manual/Jones.html">Jones Polynomial</a>:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 8}</nowiki></pre></td></tr>
</td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[5, 4]][q]</nowiki></pre></td></tr>
<td><em> Sqrt[q] TorusKnot[m, n]
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 11 13
PolyPrint[-(-----------------------), q]
1 + q</em></td>
q + q + q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
</tr></table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[5, 4]][q]</nowiki></pre></td></tr>
<p><table><tr align=left valign=top>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 22 24 26 28 30 32 34 36 38 40
<td>Other knots (up to mirrors) with the same <a
q + q + 2 q + 2 q + 3 q + 2 q + q - q - 2 q - 3 q -
href="../Manual/Jones.html">Jones Polynomial</a>:
</td>
<td><em>{...}</em></td>
</tr></table>

Include[ColouredJones.mhtml]

<p><table><tr align=left valign=top>
<td><a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>:
</td>
<td><em>PolyPrint[TorusKnot[m, n], q]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>:
</td>
<td><em></em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Vassiliev.html">V<sub>2</sub> and
V<sub>3</sub>, the type 2 and 3 Vassiliev invariants</a>: </td>
<td><em>{0, 0}</em></td>
</tr></table>

<p><a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials <em>t<sup>r</sup>q<sup>j</sup></em>
are shown, along with their alternating sums &chi; (fixed <em>j</em>,
alternation over <em>r</em>).
The squares with <font class=HLYellow>yellow</font> highlighting
are those on the "critical diagonals", where <em>j-2r=s+1</em> or
<em>j-2r=s+1</em>, where <em>s=0</em> is the signature of
T(m,n). Nonzero entries off the critical diagonals (if
any exist) are highlighted in <font class=HLRed>red</font>.
<br><center>
TabularKh[$Failed[q, t], {1, -1}]
</center>

ComputerTalkHeader

GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n]
InOut[Crossings[``], TorusKnot[m, n]]
InOut[PD[``], TorusKnot[m, n]]
InOut[GaussCode[``], TorusKnot[m, n]]
InOut[BR[``], TorusKnot[m, n]]
InOut[alex = Alexander[``][t], TorusKnot[m, n]]
InOut[Conway[``][z], TorusKnot[m, n]]
InOut[Select[AllKnots[], (alex === Alexander[#][t])&]]
InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]]
InOut[J=Jones[``][q], TorusKnot[m, n]]
InOut[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) ===\
42 44 46 48 50 52
Jones[#][q])&]]
3 q - 2 q - q + q + q + q</nowiki></pre></td></tr>
Include[ColouredJonesM.mhtml]
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[5, 4]][a, z]</nowiki></pre></td></tr>
InOut[A2Invariant[``][q], TorusKnot[m, n]]
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
InOut[Kauffman[``][a, z], TorusKnot[m, n]]
-18 9 21 14 z 8 z 28 z 21 z z 22 z
InOut[{Vassiliev[2][`1`], Vassiliev[3][`1`]}, TorusKnot[m, n]]
a + --- + --- + --- - --- - --- - ---- - ---- - --- - ----- -
InOut[Kh[``][q, t], TorusKnot[m, n]]
16 14 12 19 17 15 13 18 16

a a a a a a a a a
</table>

2 2 3 3 3 4 4 4
<p><hr><p>
91 z 70 z 14 z 84 z 70 z 21 z 154 z 133 z

----- - ----- + ----- + ----- + ----- + ----- + ------ + ------ -
<table valign=center width=100% border=0><tr>
14 12 17 15 13 16 14 12
<td align=left>
a a a a a a a a
<a href="/~drorbn/">Dror Bar-Natan</a>:
<a href="../index.html">The Knot Atlas</a>:
5 5 5 6 6 6 7 7 7
<a href="index.html">Torus Knots</a>:
7 z 91 z 84 z 8 z 129 z 121 z z 46 z 45 z
<a href="#top">The Torus Knot T(m,n)</a>
---- - ----- - ----- - ---- - ------ - ------ + --- + ----- + ----- +
</td>
17 15 13 16 14 12 17 15 13
<td align=right>
a a a a a a a a a
<table border=0><tr>
<td align=center>
8 8 8 9 9 10 10 11 11
<a href="prevm.prevn.html"><img border=0
z 56 z 55 z 11 z 11 z 12 z 12 z z z
width=120 height=120 src="prevm.prevn_120.jpg"
--- + ----- + ----- - ----- - ----- - ------ - ------ + --- + --- +
alt="T(prevm,prevn)"><br>T(prevm,prevn)</a>
16 14 12 15 13 14 12 15 13
</td><td align=center>
a a a a a a a a a
<a href="nextm.nextn.html"><img border=0
width=120 height=120 src="nextm.nextn_120.jpg"
12 12
alt="T(nextm,nextn)"><br>T(nextm,nextn)</a>
</td>
z z
--- + ---
</tr></table>
14 12
</td>
a a</nowiki></pre></td></tr>
</tr></table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[5, 4]], Vassiliev[3][TorusKnot[5, 4]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, 50}</nowiki></pre></td></tr>
</body>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[5, 4]][q, t]</nowiki></pre></td></tr>
</html>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 11 13 15 2 19 3 17 4 19 4 21 5 23 5
q + q + q t + q t + q t + q t + q t + q t +
19 6 21 6 23 7 25 7 23 8 27 9
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr>
</table> }}

Latest revision as of 10:38, 31 August 2005

T(7,3).jpg

T(7,3)

T(15,2).jpg

T(15,2)

T(5,4).jpg See other torus knots

Visit T(5,4) at Knotilus!

Edit T(5,4) Quick Notes


Edit T(5,4) Further Notes and Views


Knot presentations

Planar diagram presentation X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
Gauss code 14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13
Dowker-Thistlethwaite code 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6
Braid presentation
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,4)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,4)/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (15, 50)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(5,4)/V 2,1 Data:T(5,4)/V 3,1 Data:T(5,4)/V 4,1 Data:T(5,4)/V 4,2 Data:T(5,4)/V 4,3 Data:T(5,4)/V 5,1 Data:T(5,4)/V 5,2 Data:T(5,4)/V 5,3 Data:T(5,4)/V 5,4 Data:T(5,4)/V 6,1 Data:T(5,4)/V 6,2 Data:T(5,4)/V 6,3 Data:T(5,4)/V 6,4 Data:T(5,4)/V 6,5 Data:T(5,4)/V 6,6 Data:T(5,4)/V 6,7 Data:T(5,4)/V 6,8 Data:T(5,4)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
27         1-1
25       1  -1
23     1 11 -1
21     11   0
19   11 1   1
17    1     1
15  1       1
131         1
111         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Torus Knot Page master template (intermediate).

See/edit the Torus Knot_Splice_Base (expert).

Back to the top.

T(7,3).jpg

T(7,3)

T(15,2).jpg

T(15,2)