T(5,2): Difference between revisions
No edit summary  | 
				No edit summary  | 
				||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- Script generated - do not edit! -->  | 
  |||
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit!  | 
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. -->  | 
|||
<!--  -->  | 
  <!--  -->  | 
||
<!--  -->  | 
|||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<span id="top"></span>  | 
  |||
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit!  | 
|||
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page.  | 
|||
{{Knot Navigation Links|ext=jpg}}  | 
  |||
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately.  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. -->  | 
|||
{| align=left  | 
  |||
<!--  -->  | 
|||
| ⚫ | |||
{{Torus Knot Page|  | 
|||
|[[Image:{{PAGENAME}}.jpg]]  | 
  |||
m = 5 |  | 
|||
| ⚫ | |||
n = 2 |  | 
|||
| ⚫ | |||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/5.2.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!  | 
  |||
braid_table     = <table cellspacing=0 cellpadding=0 border=0>  | 
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>  | 
|||
{{:{{PAGENAME}} Quick Notes}}  | 
  |||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>  | 
|||
|}  | 
  |||
| ⚫ | |||
same_alexander  = [[5_1]], [[10_132]],  |  | 
|||
<br style="clear:both" />  | 
  |||
same_jones      = [[5_1]], [[10_132]],  |  | 
|||
| ⚫ | |||
{{:{{PAGENAME}} Further Notes and Views}}  | 
  |||
{{Knot Presentations}}  | 
  |||
===Knot presentations===  | 
  |||
{|  | 
  |||
|'''[[Planar Diagrams|Planar diagram presentation]]'''  | 
  |||
|style="padding-left: 1em;" | X<sub>3948</sub> X<sub>9,5,10,4</sub> X<sub>5,1,6,10</sub> X<sub>1726</sub> X<sub>7382</sub>   | 
  |||
|-  | 
  |||
|'''[[Gauss Codes|Gauss code]]'''  | 
  |||
|style="padding-left: 1em;" | <math>\{-4,5,-1,2,-3,4,-5,1,-2,3\}</math>  | 
  |||
|-  | 
  |||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''  | 
  |||
|style="padding-left: 1em;" | 6 8 10 2 4  | 
  |||
|}  | 
  |||
{{Polynomial Invariants}}  | 
  |||
{{Vassiliev Invariants}}  | 
  |||
===[[Khovanov Homology]]===  | 
  |||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.  | 
  |||
| ⚫ | |||
<tr align=center>  | 
  <tr align=center>  | 
||
<td width=20.%><table cellpadding=0 cellspacing=0>  | 
  <td width=20.%><table cellpadding=0 cellspacing=0>  | 
||
  <tr><td>\</td><td> </td><td>r</td></tr>  | 
|||
<tr><td> </td><td> \ </td><td> </td></tr>  | 
  <tr><td> </td><td> \ </td><td> </td></tr>  | 
||
<tr><td>j</td><td> </td><td>\</td></tr>  | 
  <tr><td>j</td><td> </td><td>\</td></tr>  | 
||
</table></td>  | 
  </table></td>  | 
||
  <td width=10.%>0</td    ><td width=10.%>1</td    ><td width=10.%>2</td    ><td width=10.%>3</td    ><td width=10.%>4</td    ><td width=10.%>5</td    ><td width=20.%>χ</td></tr>  | 
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr>  | 
  <tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr>  | 
||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr>  | 
  <tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr>  | 
||
| Line 58: | Line 36: | ||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  <tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
||
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  <tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
||
</table>  | 
  </table> |  | 
||
coloured_jones_2 = <math>q^{19}-q^{18}+q^{16}-2 q^{15}+q^{13}-q^{12}+q^{10}-q^9+q^7+q^4</math> |  | 
|||
coloured_jones_3 =  |  | 
|||
{{Computer Talk Header}}  | 
  |||
coloured_jones_4 =  |  | 
|||
coloured_jones_5 =  |  | 
|||
| ⚫ | |||
coloured_jones_6 =  |  | 
|||
<tr valign=top>  | 
  |||
coloured_jones_7 =  |  | 
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td>  | 
  |||
computer_talk =   | 
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
  |||
         <table>  | 
|||
</tr>  | 
  |||
| ⚫ | |||
| ⚫ | |||
         <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td>  | 
|||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
|||
         </tr>  | 
|||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[5, 2]]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>  | 
|||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>TubePlot[TorusKnot[5, 2]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:T(5,2).jpg]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[3]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
|||
| ⚫ | |||
| ⚫ | |||
  X[7, 3, 8, 2]]</nowiki></pre></td></tr>  | 
    X[7, 3, 8, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[5, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-4, 5, -1, 2, -3, 4, -5, 1, -2, 3]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[5, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1}]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[5, 2]][t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -2   1        2  | 
||
1 + t   - - - t + t  | 
  1 + t   - - - t + t  | 
||
          t</nowiki></pre></td></tr>  | 
            t</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[5, 2]][z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2    4  | 
||
1 + 3 z  + z</nowiki></pre></td></tr>  | 
  1 + 3 z  + z</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[5, 2]], KnotSignature[TorusKnot[5, 2]]}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 4}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[5, 2]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2    4    5    6    7  | 
||
q  + q  - q  + q  - q</nowiki></pre></td></tr>  | 
  q  + q  - q  + q  - q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki></pre></td></tr>  | 
||
| ⚫ | |||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>  | 
  |||
<tr valign=top><td><pre style="color:  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6    8      10    12    14    18    20    22  | 
||
| ⚫ | |||
q  + q  + 2 q   + q   + q   - q   - q   - q</nowiki></pre></td></tr>  | 
  q  + q  + 2 q   + q   + q   - q   - q   - q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[5, 2]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                           2      2      2    3    3    4    4  | 
||
2    3    z    z    2 z   z    3 z    4 z    z    z    z    z  | 
  2    3    z    z    2 z   z    3 z    4 z    z    z    z    z  | 
||
-- + -- + -- - -- - --- + -- - ---- - ---- + -- + -- + -- + --  | 
  -- + -- + -- - -- - --- + -- - ---- - ---- + -- + -- + -- + --  | 
||
 6    4    9    7    5     8     6      4     7    5    6    4  | 
   6    4    9    7    5     8     6      4     7    5    6    4  | 
||
a    a    a    a    a     a     a      a     a    a    a    a</nowiki></pre></td></tr>  | 
  a    a    a    a    a     a     a      a     a    a    a    a</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[5, 2]], Vassiliev[3][TorusKnot[5, 2]]}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 5}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[5, 2]][q, t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3    5    7  2    11  3    11  4    15  5  | 
||
q  + q  + q  t  + q   t  + q   t  + q   t</nowiki></pre></td></tr>  | 
  q  + q  + q  t  + q   t  + q   t  + q   t</nowiki></pre></td></tr>  | 
||
</table>  | 
           </table>   }}  | 
||
Latest revision as of 10:37, 31 August 2005
| 
 | 
 | 
 
 | 
See other torus knots | 
| Edit T(5,2) Quick Notes
 An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2). When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1  | 
Edit T(5,2) Further Notes and Views
   The VISA Interlink Logo [1]  | 
   Version of the US bicentennial emblem  | |
   A pentagonal table by Bob Mackay [2]  | 
||
   Partial view of US bicentennial logo on a shirt seen in Lisboa [3]  | ||
This sentence was last edited by Dror. Sometime later, Scott added this sentence.
Knot presentations
| Planar diagram presentation | X3948 X9,5,10,4 X5,1,6,10 X1726 X7382 | 
| Gauss code | -4, 5, -1, 2, -3, 4, -5, 1, -2, 3 | 
| Dowker-Thistlethwaite code | 6 8 10 2 4 | 
| Braid presentation | 
Polynomial invariants
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["T(5,2)"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 5, 4 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {5_1, 10_132,}
Same Jones Polynomial (up to mirroring, ): {5_1, 10_132,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["T(5,2)"];
 | 
In[4]:=
 | 
{A = Alexander[K][t], J = Jones[K][q]}
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[4]=
 | 
{ , } | 
In[5]:=
 | 
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
 | 
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
 | 
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
 | 
Out[5]=
 | 
{5_1, 10_132,} | 
In[6]:=
 | 
DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
 | 
Out[6]=
 | 
{5_1, 10_132,} | 
Vassiliev invariants
| V2 and V3: | (3, 5) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of T(5,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top.  | 
  | 

















