The HOMFLY-PT Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
m (Reverted edit of 61.98.232.167, changed back to last version by Drorbn)
Line 36: Line 36:
in = <nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki> |
in = <nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki> |
out= <nowiki> -2 4 6 2 2 2 4 2
out= <nowiki> -2 4 6 2 2 2 4 2
a - a a - z - a z - a z</nowiki>}}
a - a + a - z - a z - a z</nowiki>}}
<!--END-->
<!--END-->


Line 47: Line 47:
in = <nowiki>Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]</nowiki> |
in = <nowiki>Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]</nowiki> |
out= <nowiki> -6 -5 -4 2 2 2 2
out= <nowiki> -6 -5 -4 2 2 2 2
2 q - q q - -- -- - - - q q
2 + q - q + q - -- + -- - - - q + q
3 2 q
3 2 q
q q</nowiki>}}
q q</nowiki>}}
Line 58: Line 58:
in = <nowiki>Jones[K][q]</nowiki> |
in = <nowiki>Jones[K][q]</nowiki> |
out= <nowiki> -6 -5 -4 2 2 2 2
out= <nowiki> -6 -5 -4 2 2 2 2
2 q - q q - -- -- - - - q q
2 + q - q + q - -- + -- - - - q + q
3 2 q
3 2 q
q q</nowiki>}}
q q</nowiki>}}
Line 76: Line 76:
In our parametrization of the <math>A_2</math> link invariant, it satisfies
In our parametrization of the <math>A_2</math> link invariant, it satisfies


<center><math>A_2(L)(q) = (-1)^c(q^2 1 q^{-2})H(L)(q^{-3},\,q-q^{-1})</math>,</center>
<center><math>A_2(L)(q) = (-1)^c(q^2+1+q^{-2})H(L)(q^{-3},\,q-q^{-1})</math>,</center>


where <math>L</math> is some knot or link and where <math>c</math> is the number of components of <math>L</math>. Let us verify this fact for the Whitehead link, [[L5a1]]:
where <math>L</math> is some knot or link and where <math>c</math> is the number of components of <math>L</math>. Let us verify this fact for the Whitehead link, [[L5a1]]:
Line 88: Line 88:


<!--$$Simplify[{
<!--$$Simplify[{
(-1)^(Length[Skeleton[L]]-1)(q^2 1 1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
A2Invariant[L][q]
A2Invariant[L][q]
}]$$-->
}]$$-->
Line 95: Line 95:
n = 9 |
n = 9 |
in = <nowiki>Simplify[{
in = <nowiki>Simplify[{
(-1)^(Length[Skeleton[L]]-1)(q^2 1 1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
A2Invariant[L][q]
A2Invariant[L][q]
}]</nowiki> |
}]</nowiki> |
out= <nowiki> -12 -8 -6 2 -2 2 4 6
out= <nowiki> -12 -8 -6 2 -2 2 4 6
{2 - q q q -- q q q q ,
{2 - q + q + q + -- + q + q + q + q ,
4
4
q
q
-12 -8 -6 2 -2 2 4 6
-12 -8 -6 2 -2 2 4 6
2 - q q q -- q q q q }
2 - q + q + q + -- + q + q + q + q }
4
4
q</nowiki>}}
q</nowiki>}}

Revision as of 13:02, 14 July 2007


The HOMFLY-PT polynomial (see [HOMFLY] and [PT]) of a knot or link is defined by the skein relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle aH\left(\overcrossing\right)-a^{-1}H\left(\undercrossing\right)=zH\left(\smoothing\right) }

and by the initial condition =1.

KnotTheory` knows about the HOMFLY-PT polynomial:

(For In[1] see Setup)

In[1]:= ?HOMFLYPT
HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.
In[2]:= HOMFLYPT::about
The HOMFLYPT program was written by Scott Morrison.

Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:

In[3]:= K = Knot[8, 1];
In[4]:= HOMFLYPT[Knot[8, 1]][a, z]
Out[4]= -2 4 6 2 2 2 4 2 a - a + a - z - a z - a z

It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,

In[5]:= Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]
Out[5]= -6 -5 -4 2 2 2 2 2 + q - q + q - -- + -- - - - q + q 3 2 q q q
In[6]:= Jones[K][q]
Out[6]= -6 -5 -4 2 2 2 2 2 + q - q + q - -- + -- - - - q + q 3 2 q q q
In[7]:= {HOMFLYPT[K][1, z], Conway[K][z]}
Out[7]= 2 2 {1 - 3 z , 1 - 3 z }
8 1.gif
8_1
L5a1.gif
L5a1

In our parametrization of the link invariant, it satisfies

,

where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:

In[8]:= L = Link[5, Alternating, 1];
In[9]:= Simplify[{ (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q], A2Invariant[L][q] }]
Out[9]= -12 -8 -6 2 -2 2 4 6 {2 - q + q + q + -- + q + q + q + q , 4 q -12 -8 -6 2 -2 2 4 6 2 - q + q + q + -- + q + q + q + q } 4 q

Other Software to Compute the HOMFLY-PT Polynomial

A C-based program running under windows by M. Ochiai can compute the HOMFLY-PT polynomial of certain knots and links with up to hundreds of crossings using "base tangle decompositions". His program, bTd, is available at [1].

References

[HOMFLY] ^  J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.

[PT] ^  J. Przytycki and P. Traczyk, , Proc. Amer. Math. Soc. 100 (1987) 744-748.