The A2 Invariant: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
[http://s1.shard.jp/olharder/auto-reply-business.html refinance balloon auto ] [http://s1.shard.jp/olharder/hertz-autovermietung.html autoroute map updates ] [http://s1.shard.jp/losaul/hsbc-asset-management.html car auction australia ] [http://s1.shard.jp/frhorton/y6gqutu2n.html a list of african american scientist ] [http://s1.shard.jp/frhorton/ocdp2flvo.html african elephant masks] [http://s1.shard.jp/losaul/australian-momentum.html beiersdorf australia limited ] [http://s1.shard.jp/olharder/stan-olsen-auto.html autour de la maison ] [http://s1.shard.jp/frhorton/ru9zwzdr5.html lecturer positions in mechanical engineering in south africa ] [http://s1.shard.jp/galeach/new110.html sexy asian goddess ] [http://s1.shard.jp/bireba/antivirus-tests.html clam antivirus reviews ] [http://s1.shard.jp/frhorton/3q938n1mz.html british airways south africa bookings ] [http://s1.shard.jp/olharder/autoroll-654.html links] [http://s1.shard.jp/losaul/aboriginal-names.html australian rock bands ] [http://s1.shard.jp/olharder/autoroll-654.html link] [http://s1.shard.jp/losaul/diabetes-australia.html australian currency coins ] [http://s1.shard.jp/olharder/autoroll-654.html links] [http://s1.shard.jp/olharder/gxautos.html automatische perforierung ] [http://s1.shard.jp/losaul/bank-of-ireland.html australian hosting ] [http://s1.shard.jp/olharder/auto-buy-com.html auto lease program ] [http://s1.shard.jp/losaul/scoutsaustralia.html caltex australia petroleum ] [http://s1.shard.jp/olharder/autoroll-654.html http] [http://s1.shard.jp/bireba/nod-antivirus.html symantec antivirus 9.0.3 ] [http://s1.shard.jp/galeach/new8.html asian girl photo gallery ] [http://s1.shard.jp/olharder/automated-gasoline.html auto lease form free ] [http://s1.shard.jp/bireba/install-software.html antivirus for worms ] [http://s1.shard.jp/olharder/autoroll-654.html map] [http://s1.shard.jp/frhorton/9vces3l25.html african american trivia quiz ] [http://s1.shard.jp/frhorton/hzioyx6wv.html african american appointed court first supreme us] [http://s1.shard.jp/galeach/new129.html dallas asian spas ] [http://s1.shard.jp/bireba/the-symantec-antivirus.html noton antivirus 2004 download ] [http://s1.shard.jp/losaul/consolidated-travel.html seniors card western australia ] [http://s1.shard.jp/galeach/new109.html asian healing arts ] [http://s1.shard.jp/bireba/download-best-antivirus.html nortun antivirus ] [http://s1.shard.jp/frhorton/ds9o5dtz4.html african rainforest people ] [http://s1.shard.jp/olharder/autoroll-654.html top] [http://s1.shard.jp/losaul/open-source-software.html australian open mens singles prize money ] [http://s1.shard.jp/galeach/new38.html airline consolidators asia] [http://s1.shard.jp/frhorton/4dqjbtjm2.html africanism records ] [http://s1.shard.jp/galeach/new125.html asia news network ] [http://s1.shard.jp/losaul/australia-brisbane.html electoral roles australia ] [http://s1.shard.jp/frhorton/h4xwn2n8q.html african central climate geography republic ] [http://s1.shard.jp/bireba/symantec-antivirus.html clam antivirus ] [http://s1.shard.jp/bireba/northon-antivirus.html nortun antivirus ] [http://s1.shard.jp/olharder/automotive-repair.html little or no money down bad credit auto financing ] [http://s1.shard.jp/losaul/australian-gold.html kas australia pty ltd ] [http://s1.shard.jp/bireba/antivirus-software.html ca etrust antivirus 2005 ] [http://s1.shard.jp/olharder/angeles-auto-body.html realtor wautoma ] [http://s1.shard.jp/olharder/dacoma-automotive.html auto insurance online qoutes ] [http://s1.shard.jp/bireba/vet-antivirus.html winantivirus2005 serial ]
http://www.textc4tvarouorri.com
{{Manual TOC Sidebar}}
{{Manual TOC Sidebar}}


Line 10: Line 8:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 1 |
n = 2 |
in = <nowiki>A2Invariant</nowiki> |
in = <nowiki>A2Invariant</nowiki> |
out= <nowiki>A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q.</nowiki>}}
out= <nowiki>A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q.</nowiki>}}
Line 25: Line 23:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 2 |
n = 3 |
in = <nowiki>Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]</nowiki> |
in = <nowiki>Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]</nowiki> |
out= <nowiki>True</nowiki>}}
out= <nowiki>True</nowiki>}}
Line 33: Line 31:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 3 |
n = 4 |
in = <nowiki>A2Invariant[Knot[10, 22]][q]</nowiki> |
in = <nowiki>A2Invariant[Knot[10, 22]][q]</nowiki> |
out= <nowiki> -12 -8 -6 -4 2 4 6 8 10 12 14
out= <nowiki> -12 -8 -6 -4 2 4 6 8 10 12 14
Line 47: Line 45:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 4 |
n = 5 |
in = <nowiki>A2Invariant[Knot[10, 35]][q]</nowiki> |
in = <nowiki>A2Invariant[Knot[10, 35]][q]</nowiki> |
out= <nowiki> -14 -12 -10 -8 2 2 2 6 8 10 14 16
out= <nowiki> -14 -12 -10 -8 2 2 2 6 8 10 14 16
Line 63: Line 61:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 5 |
n = 6 |
in = <nowiki>all = Join[AllKnots[], AllLinks[]];</nowiki>}}
in = <nowiki>all = Join[AllKnots[], AllLinks[]];</nowiki>}}
<!--END-->
<!--END-->
Line 70: Line 68:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 6 |
n = 7 |
in = <nowiki>Length /@ {Union[A2Invariant[#][q]& /@ all], all}</nowiki> |
in = <nowiki>Length /@ {Union[A2Invariant[#][q]& /@ all], all}</nowiki> |
out= <nowiki>{2163, 2226}</nowiki>}}
out= <nowiki>{2163, 2226}</nowiki>}}

Latest revision as of 17:22, 21 February 2013


We compute the (or quantum ) invariant using the normalization and formulas of [Khovanov], which in itself follows [Kuperberg]:

(For In[1] see Setup)

In[2]:= ?A2Invariant
A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q.

As an example, let us check that the knots 10_22 and 10_35 have the same Jones polynomial but different invariants:

In[3]:= Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]
Out[3]= True
In[4]:= A2Invariant[Knot[10, 22]][q]
Out[4]= -12 -8 -6 -4 2 4 6 8 10 12 14 -1 + q + q + q - q + -- - q - 2 q + q - q + q + q + 2 q 18 q
In[5]:= A2Invariant[Knot[10, 35]][q]
Out[5]= -14 -12 -10 -8 2 2 2 6 8 10 14 16 q + q - q + q - -- + -- + q - q + q - 2 q + q - q + 4 2 q q 18 20 q + q

The invariant attains 2163 values on the 2226 knots and links known to KnotTheory:

In[6]:= all = Join[AllKnots[], AllLinks[]];
In[7]:= Length /@ {Union[A2Invariant[#][q]& /@ all], all}
Out[7]= {2163, 2226}

[Khovanov] ^  M. Khovanov, link homology I, arXiv:math.QA/0304375.

[Kuperberg] ^  G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109-151, arXiv:q-alg/9712003.