The HOMFLY-PT Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
 
(29 intermediate revisions by 11 users not shown)
Line 1: Line 1:
{{Manual TOC Sidebar}}
{{Manual TOC Sidebar}}

The ''HOMFLY-PT polynomial'' <math>H(L)(a,z)</math> (see {{ref|HOMFLY}} and {{ref|PT}}) of a knot or link <math>L</math> is defined by the skein relation

<center><math>
aH\left(\overcrossing\right)-a^{-1}H\left(\undercrossing\right)=zH\left(\smoothing\right)
</math></center>

and by the initial condition <math>H(\bigcirc)</math>=1.

<code>KnotTheory`</code> knows about the HOMFLY-PT polynomial:

{{Startup Note}}
<!--$$?HOMFLYPT$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
n = 2 |
n1 = 3 |
in = <nowiki>HOMFLYPT</nowiki> |
out= <nowiki>HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.</nowiki> |
about= <nowiki>The HOMFLYPT program was written by Scott Morrison.</nowiki>}}
<!--END-->

Thus, for example, here's the HOMFLY-PT polynomial of the knot [[8_1]]:
<!--$$K = Knot[8, 1];$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 4 |
in = <nowiki>K = Knot[8, 1];</nowiki>}}
<!--END-->

<!--$$HOMFLYPT[Knot[8, 1]][a, z]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 5 |
in = <nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki> |
out= <nowiki> -2 4 6 2 2 2 4 2
a - a + a - z - a z - a z</nowiki>}}
<!--END-->

It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at <math>a=q^{-1}</math> and <math>z=q^{1/2}-q^{-1/2}</math> and to the Conway polynomial at <math>a=1</math>. Indeed,

<!--$$Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 6 |
in = <nowiki>Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]</nowiki> |
out= <nowiki> -6 -5 -4 2 2 2 2
2 + q - q + q - -- + -- - - - q + q
3 2 q
q q</nowiki>}}
<!--END-->

<!--$$Jones[K][q]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 7 |
in = <nowiki>Jones[K][q]</nowiki> |
out= <nowiki> -6 -5 -4 2 2 2 2
2 + q - q + q - -- + -- - - - q + q
3 2 q
q q</nowiki>}}
<!--END-->

<!--$${HOMFLYPT[K][1, z], Conway[K][z]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 8 |
in = <nowiki>{HOMFLYPT[K][1, z], Conway[K][z]}</nowiki> |
out= <nowiki> 2 2
{1 - 3 z , 1 - 3 z }</nowiki>}}
<!--END-->

{{Knot Image Pair|8_1|gif|L5a1|gif}}

In our parametrization of the <math>A_2</math> link invariant, it satisfies

<center><math>A_2(L)(q) = (-1)^c(q^2+1+q^{-2})H(L)(q^{-3},\,q-q^{-1})</math>,</center>

where <math>L</math> is some knot or link and where <math>c</math> is the number of components of <math>L</math>. Let us verify this fact for the Whitehead link, [[L5a1]]:

<!--$$L = Link[5, Alternating, 1];$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 9 |
in = <nowiki>L = Link[5, Alternating, 1];</nowiki>}}
<!--END-->

<!--$$Simplify[{
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
A2Invariant[L][q]
}]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 10 |
in = <nowiki>Simplify[{
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
A2Invariant[L][q]
}]</nowiki> |
out= <nowiki> -12 -8 -6 2 -2 2 4 6
{2 - q + q + q + -- + q + q + q + q ,
4
q
-12 -8 -6 2 -2 2 4 6
2 - q + q + q + -- + q + q + q + q }
4
q</nowiki>}}
<!--END-->

====Other Software to Compute the HOMFLY-PT Polynomial====
A C-based program running under windows by M. Ochiai can compute the HOMFLY-PT polynomial of certain knots and links with up to hundreds of crossings using "base tangle decompositions". His program, bTd, is available at [http://amadeus.ics.nara-wu.ac.jp/~ochiai/freesoft.html].

====References====

{{note|HOMFLY}} J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, ''A new polynomial invariant of knots and links'', Bull. Amer. Math. Soc. '''12''' (1985) 239-246.

{{note|PT}} J. Przytycki and P. Traczyk, ''Conway Algebras and Skein Equivalence of Links'', Proc. Amer. Math. Soc. '''100''' (1987) 744-748.

Latest revision as of 19:56, 8 August 2013


The HOMFLY-PT polynomial (see [HOMFLY] and [PT]) of a knot or link is defined by the skein relation

Failed to parse (unknown function "\overcrossing"): {\displaystyle aH\left(\overcrossing\right)-a^{-1}H\left(\undercrossing\right)=zH\left(\smoothing\right) }

and by the initial condition =1.

KnotTheory` knows about the HOMFLY-PT polynomial:

(For In[1] see Setup)

In[2]:= ?HOMFLYPT
HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.
In[3]:= HOMFLYPT::about
The HOMFLYPT program was written by Scott Morrison.

Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:

In[4]:= K = Knot[8, 1];
In[5]:= HOMFLYPT[Knot[8, 1]][a, z]
Out[5]= -2 4 6 2 2 2 4 2 a - a + a - z - a z - a z

It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,

In[6]:= Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]
Out[6]= -6 -5 -4 2 2 2 2 2 + q - q + q - -- + -- - - - q + q 3 2 q q q
In[7]:= Jones[K][q]
Out[7]= -6 -5 -4 2 2 2 2 2 + q - q + q - -- + -- - - - q + q 3 2 q q q
In[8]:= {HOMFLYPT[K][1, z], Conway[K][z]}
Out[8]= 2 2 {1 - 3 z , 1 - 3 z }
8 1.gif
8_1
L5a1.gif
L5a1

In our parametrization of the link invariant, it satisfies

,

where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:

In[9]:= L = Link[5, Alternating, 1];
In[10]:= Simplify[{ (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q], A2Invariant[L][q] }]
Out[10]= -12 -8 -6 2 -2 2 4 6 {2 - q + q + q + -- + q + q + q + q , 4 q -12 -8 -6 2 -2 2 4 6 2 - q + q + q + -- + q + q + q + q } 4 q

Other Software to Compute the HOMFLY-PT Polynomial

A C-based program running under windows by M. Ochiai can compute the HOMFLY-PT polynomial of certain knots and links with up to hundreds of crossings using "base tangle decompositions". His program, bTd, is available at [1].

References

[HOMFLY] ^  J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.

[PT] ^  J. Przytycki and P. Traczyk, Conway Algebras and Skein Equivalence of Links, Proc. Amer. Math. Soc. 100 (1987) 744-748.