7 3: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 7 | |
|||
<span id="top"></span> |
|||
k = 3 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,5,-1,3,-4,6,-2,7,-5,4,-3/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|- valign=top |
|||
</table> | |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
braid_crossings = 8 | |
|||
|{{Rolfsen Knot Site Links|n=7|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,5,-1,3,-4,6,-2,7,-5,4,-3/goTop.html}} |
|||
braid_width = 3 | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_index = 3 | |
|||
|} |
|||
same_alexander = | |
|||
same_jones = | |
|||
<br style="clear:both" /> |
|||
khovanov_table = <table border=1> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=8.33333%>5</td ><td width=8.33333%>6</td ><td width=8.33333%>7</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
Line 45: | Line 36: | ||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{25}-q^{24}+2 q^{22}-3 q^{21}-q^{20}+5 q^{19}-5 q^{18}-2 q^{17}+8 q^{16}-6 q^{15}-2 q^{14}+7 q^{13}-4 q^{12}-2 q^{11}+5 q^{10}-2 q^9-2 q^8+3 q^7-q^5+q^4</math> | |
|||
coloured_jones_3 = <math>-q^{48}+q^{47}-q^{44}+2 q^{43}-q^{41}-2 q^{40}+4 q^{39}+2 q^{38}-4 q^{37}-5 q^{36}+6 q^{35}+6 q^{34}-7 q^{33}-7 q^{32}+6 q^{31}+10 q^{30}-9 q^{29}-8 q^{28}+6 q^{27}+9 q^{26}-7 q^{25}-7 q^{24}+4 q^{23}+8 q^{22}-4 q^{21}-6 q^{20}+q^{19}+7 q^{18}-q^{17}-4 q^{16}-2 q^{15}+5 q^{14}+q^{13}-2 q^{12}-2 q^{11}+2 q^{10}+q^9-q^7+q^6</math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{78}-q^{77}-q^{74}+2 q^{73}-2 q^{72}+q^{71}+q^{70}-3 q^{69}+3 q^{68}-4 q^{67}+2 q^{66}+4 q^{65}-3 q^{64}+4 q^{63}-10 q^{62}+q^{61}+7 q^{60}+q^{59}+8 q^{58}-18 q^{57}-3 q^{56}+10 q^{55}+4 q^{54}+14 q^{53}-24 q^{52}-6 q^{51}+10 q^{50}+5 q^{49}+19 q^{48}-27 q^{47}-8 q^{46}+10 q^{45}+5 q^{44}+18 q^{43}-25 q^{42}-7 q^{41}+8 q^{40}+4 q^{39}+17 q^{38}-20 q^{37}-6 q^{36}+4 q^{35}+2 q^{34}+16 q^{33}-13 q^{32}-5 q^{31}-q^{30}-q^{29}+15 q^{28}-6 q^{27}-2 q^{26}-4 q^{25}-4 q^{24}+11 q^{23}-q^{22}+q^{21}-4 q^{20}-5 q^{19}+6 q^{18}+2 q^{16}-q^{15}-3 q^{14}+2 q^{13}+q^{11}-q^9+q^8</math> | |
|||
coloured_jones_5 = <math>-q^{115}+q^{114}+q^{111}-2 q^{109}+q^{108}-q^{106}+2 q^{105}+2 q^{104}-3 q^{103}-q^{101}-3 q^{100}+3 q^{99}+4 q^{98}+q^{96}-3 q^{95}-8 q^{94}+4 q^{92}+7 q^{91}+7 q^{90}-q^{89}-14 q^{88}-10 q^{87}-q^{86}+12 q^{85}+18 q^{84}+6 q^{83}-17 q^{82}-21 q^{81}-9 q^{80}+16 q^{79}+25 q^{78}+13 q^{77}-14 q^{76}-29 q^{75}-15 q^{74}+17 q^{73}+27 q^{72}+15 q^{71}-9 q^{70}-33 q^{69}-18 q^{68}+17 q^{67}+27 q^{66}+16 q^{65}-10 q^{64}-31 q^{63}-17 q^{62}+15 q^{61}+26 q^{60}+14 q^{59}-8 q^{58}-27 q^{57}-16 q^{56}+11 q^{55}+21 q^{54}+13 q^{53}-3 q^{52}-21 q^{51}-14 q^{50}+4 q^{49}+13 q^{48}+12 q^{47}+4 q^{46}-12 q^{45}-12 q^{44}-2 q^{43}+3 q^{42}+8 q^{41}+10 q^{40}-3 q^{39}-7 q^{38}-5 q^{37}-4 q^{36}+q^{35}+10 q^{34}+3 q^{33}-3 q^{31}-7 q^{30}-3 q^{29}+5 q^{28}+3 q^{27}+4 q^{26}-4 q^{24}-4 q^{23}+2 q^{22}+2 q^{20}+2 q^{19}-q^{18}-2 q^{17}+q^{16}+q^{13}-q^{11}+q^{10}</math> | |
|||
<table> |
|||
coloured_jones_6 = <math>q^{159}-q^{158}-q^{155}+3 q^{152}-2 q^{151}+q^{149}-2 q^{148}-q^{147}-q^{146}+6 q^{145}-2 q^{144}+3 q^{142}-4 q^{141}-4 q^{140}-3 q^{139}+9 q^{138}-2 q^{137}+2 q^{136}+8 q^{135}-4 q^{134}-9 q^{133}-10 q^{132}+8 q^{131}-4 q^{130}+7 q^{129}+20 q^{128}+2 q^{127}-10 q^{126}-20 q^{125}-q^{124}-18 q^{123}+9 q^{122}+36 q^{121}+18 q^{120}-28 q^{118}-13 q^{117}-42 q^{116}+q^{115}+49 q^{114}+37 q^{113}+16 q^{112}-29 q^{111}-20 q^{110}-65 q^{109}-11 q^{108}+56 q^{107}+50 q^{106}+28 q^{105}-26 q^{104}-18 q^{103}-80 q^{102}-18 q^{101}+57 q^{100}+54 q^{99}+33 q^{98}-25 q^{97}-13 q^{96}-86 q^{95}-22 q^{94}+57 q^{93}+54 q^{92}+35 q^{91}-25 q^{90}-13 q^{89}-84 q^{88}-21 q^{87}+55 q^{86}+53 q^{85}+33 q^{84}-23 q^{83}-13 q^{82}-79 q^{81}-20 q^{80}+48 q^{79}+49 q^{78}+30 q^{77}-18 q^{76}-8 q^{75}-70 q^{74}-20 q^{73}+35 q^{72}+40 q^{71}+27 q^{70}-9 q^{69}+2 q^{68}-58 q^{67}-21 q^{66}+18 q^{65}+26 q^{64}+21 q^{63}+q^{62}+15 q^{61}-41 q^{60}-19 q^{59}+2 q^{58}+11 q^{57}+10 q^{56}+6 q^{55}+25 q^{54}-23 q^{53}-10 q^{52}-6 q^{51}-q^{50}-3 q^{49}+2 q^{48}+25 q^{47}-8 q^{46}+q^{45}-3 q^{44}-4 q^{43}-11 q^{42}-5 q^{41}+16 q^{40}-2 q^{39}+7 q^{38}+2 q^{37}+q^{36}-10 q^{35}-8 q^{34}+7 q^{33}-3 q^{32}+5 q^{31}+3 q^{30}+4 q^{29}-4 q^{28}-5 q^{27}+3 q^{26}-3 q^{25}+q^{24}+q^{23}+3 q^{22}-q^{21}-2 q^{20}+2 q^{19}-q^{18}+q^{15}-q^{13}+q^{12}</math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = <math>-q^{210}+q^{209}+q^{206}-q^{203}-2 q^{202}+2 q^{201}-q^{199}+2 q^{198}+q^{196}-q^{195}-5 q^{194}+3 q^{193}+q^{192}-2 q^{191}+3 q^{190}+4 q^{188}-2 q^{187}-9 q^{186}+3 q^{185}+q^{184}-2 q^{183}+5 q^{182}+q^{181}+9 q^{180}-q^{179}-13 q^{178}-q^{177}-6 q^{176}-6 q^{175}+8 q^{174}+6 q^{173}+19 q^{172}+9 q^{171}-11 q^{170}-5 q^{169}-22 q^{168}-23 q^{167}+q^{166}+5 q^{165}+35 q^{164}+34 q^{163}+8 q^{162}+3 q^{161}-36 q^{160}-53 q^{159}-27 q^{158}-12 q^{157}+43 q^{156}+66 q^{155}+40 q^{154}+32 q^{153}-38 q^{152}-82 q^{151}-63 q^{150}-46 q^{149}+39 q^{148}+88 q^{147}+74 q^{146}+65 q^{145}-30 q^{144}-96 q^{143}-88 q^{142}-79 q^{141}+25 q^{140}+101 q^{139}+93 q^{138}+88 q^{137}-22 q^{136}-98 q^{135}-95 q^{134}-98 q^{133}+14 q^{132}+104 q^{131}+100 q^{130}+97 q^{129}-19 q^{128}-97 q^{127}-92 q^{126}-106 q^{125}+9 q^{124}+104 q^{123}+100 q^{122}+100 q^{121}-19 q^{120}-95 q^{119}-93 q^{118}-104 q^{117}+10 q^{116}+102 q^{115}+99 q^{114}+98 q^{113}-17 q^{112}-95 q^{111}-91 q^{110}-99 q^{109}+8 q^{108}+96 q^{107}+94 q^{106}+95 q^{105}-13 q^{104}-88 q^{103}-83 q^{102}-93 q^{101}+2 q^{100}+82 q^{99}+83 q^{98}+88 q^{97}-2 q^{96}-69 q^{95}-69 q^{94}-87 q^{93}-11 q^{92}+60 q^{91}+63 q^{90}+79 q^{89}+14 q^{88}-41 q^{87}-46 q^{86}-78 q^{85}-25 q^{84}+30 q^{83}+37 q^{82}+64 q^{81}+26 q^{80}-12 q^{79}-16 q^{78}-58 q^{77}-34 q^{76}+4 q^{75}+8 q^{74}+41 q^{73}+25 q^{72}+7 q^{71}+12 q^{70}-31 q^{69}-26 q^{68}-8 q^{67}-13 q^{66}+14 q^{65}+12 q^{64}+8 q^{63}+24 q^{62}-7 q^{61}-8 q^{60}-q^{59}-18 q^{58}-3 q^{57}-4 q^{56}-2 q^{55}+18 q^{54}+q^{53}+5 q^{52}+11 q^{51}-8 q^{50}-6 q^{49}-8 q^{48}-10 q^{47}+7 q^{46}-3 q^{45}+5 q^{44}+13 q^{43}+q^{42}+q^{41}-5 q^{40}-8 q^{39}+2 q^{38}-5 q^{37}-q^{36}+6 q^{35}+3 q^{34}+3 q^{33}-q^{32}-4 q^{31}+3 q^{30}-3 q^{29}-2 q^{28}+q^{27}+q^{26}+2 q^{25}-2 q^{23}+2 q^{22}-q^{20}+q^{17}-q^{15}+q^{14}</math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 1, 7], X[8, 14, 9, 13], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[7, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 1, 7], X[8, 14, 9, 13], |
|||
X[12, 6, 13, 5], X[2, 10, 3, 9], X[4, 12, 5, 11]]</nowiki></ |
X[12, 6, 13, 5], X[2, 10, 3, 9], X[4, 12, 5, 11]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 3]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[7, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 3]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[7, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 12, 14, 2, 4, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[7, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, 1, 1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[7, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[7, 3]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:7_3_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[7, 3]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, {3, 4}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[7, 3]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 2 |
|||
3 + -- - - - 3 t + 2 t |
3 + -- - - - 3 t + 2 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 3]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 5 z + 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[7, 3]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 3]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 5 z + 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[7, 3]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 |
|||
<table><tr align=left> |
|||
q - q + 2 q - 2 q + 3 q - 2 q + q - q</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 3]}</nowiki></code></td></tr> |
|||
</table> |
|||
q + q + q + 2 q + q + q - q - q - q - q</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 3]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[7, 3]], KnotSignature[Knot[7, 3]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{13, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[7, 3]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8 9 |
|||
q - q + 2 q - 2 q + 3 q - 2 q + q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 3]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[7, 3]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 10 14 16 18 20 22 24 26 28 |
|||
q + q + q + 2 q + q + q - q - q - q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[7, 3]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 |
|||
-2 2 -4 z 3 z 3 z z z |
|||
-- + -- + a - -- + ---- + ---- + -- + -- |
|||
8 6 8 6 4 6 4 |
|||
a a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[7, 3]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 3 3 |
|||
-2 2 -4 2 z z 3 z z 6 z 4 z 3 z z z |
-2 2 -4 2 z z 3 z z 6 z 4 z 3 z z z |
||
-- - -- + a - --- + -- + --- - --- + ---- + ---- - ---- + --- - -- - |
-- - -- + a - --- + -- + --- - --- + ---- + ---- - ---- + --- - -- - |
||
Line 97: | Line 193: | ||
---- - ---- + --- - ---- - ---- + -- + -- + ---- + -- + -- + -- |
---- - ---- + --- - ---- - ---- + -- + -- + ---- + -- + -- + -- |
||
7 5 10 8 6 4 9 7 5 8 6 |
7 5 10 8 6 4 9 7 5 8 6 |
||
a a a a a a a a a a a</nowiki></ |
a a a a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 3]], Vassiliev[3][Knot[7, 3]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 11}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[7, 3]], Vassiliev[3][Knot[7, 3]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[7, 3]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 5 7 2 9 2 9 3 11 3 11 4 13 4 |
|||
q + q + q t + q t + q t + q t + q t + 2 q t + q t + |
q + q + q t + q t + q t + q t + q t + 2 q t + q t + |
||
15 5 15 6 19 7 |
15 5 15 6 19 7 |
||
2 q t + q t + q t</nowiki></ |
2 q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[7, 3], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 5 7 8 9 10 11 12 13 14 |
|||
q - q + 3 q - 2 q - 2 q + 5 q - 2 q - 4 q + 7 q - 2 q - |
|||
15 16 17 18 19 20 21 22 24 |
|||
6 q + 8 q - 2 q - 5 q + 5 q - q - 3 q + 2 q - q + |
|||
25 |
|||
q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 7 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X10,4,11,3 X14,8,1,7 X8,14,9,13 X12,6,13,5 X2,10,3,9 X4,12,5,11 |
Gauss code | 1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3 |
Dowker-Thistlethwaite code | 6 10 12 14 2 4 8 |
Conway Notation | [43] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{4, 9}, {3, 5}, {6, 4}, {5, 8}, {2, 6}, {9, 7}, {1, 3}, {8, 2}, {7, 1}] |
[edit Notes on presentations of 7 3]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 3"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X10,4,11,3 X14,8,1,7 X8,14,9,13 X12,6,13,5 X2,10,3,9 X4,12,5,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 12 14 2 4 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[43] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 9}, {3, 5}, {6, 4}, {5, 8}, {2, 6}, {9, 7}, {1, 3}, {8, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 3"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (5, 11) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 7 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|