9 11: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
m (Reverted edit of 203.199.198.232, changed back to last version by ScottTestRobot)
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->

{{Rolfsen Knot Page|
<!-- provide an anchor so we can return to the top of the page -->
n = 9 |
<span id="top"></span>
k = 11 |

KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,8,-7,9,-2,3,-4,2,-5,6,-8,7,-9,5/goTop.html |
<!-- this relies on transclusion for next and previous links -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
{| align=left
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
|- valign=top
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
|[[Image:{{PAGENAME}}.gif]]
</table> |
|{{Rolfsen Knot Site Links|n=9|k=11|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,8,-7,9,-2,3,-4,2,-5,6,-8,7,-9,5/goTop.html}}
braid_crossings = 9 |
|{{:{{PAGENAME}} Quick Notes}}
braid_width = 4 |
|}
braid_index = 4 |

same_alexander = [[K11n95]], |
<br style="clear:both" />
same_jones = |

khovanov_table = <table border=1>
{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
Line 47: Line 39:
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table> |
coloured_jones_2 = <math>q^{25}-2 q^{24}+q^{23}+4 q^{22}-8 q^{21}+3 q^{20}+9 q^{19}-17 q^{18}+7 q^{17}+14 q^{16}-25 q^{15}+9 q^{14}+19 q^{13}-26 q^{12}+5 q^{11}+21 q^{10}-22 q^9+18 q^7-14 q^6-3 q^5+13 q^4-6 q^3-4 q^2+6 q-1-2 q^{-1} + q^{-2} </math> |

coloured_jones_3 = <math>-q^{48}+2 q^{47}-q^{46}-q^{45}-q^{44}+5 q^{43}-q^{42}-5 q^{41}+9 q^{39}-4 q^{38}-8 q^{37}+5 q^{36}+13 q^{35}-14 q^{34}-13 q^{33}+19 q^{32}+18 q^{31}-26 q^{30}-25 q^{29}+32 q^{28}+27 q^{27}-28 q^{26}-37 q^{25}+30 q^{24}+35 q^{23}-18 q^{22}-43 q^{21}+17 q^{20}+37 q^{19}-3 q^{18}-43 q^{17}+q^{16}+37 q^{15}+9 q^{14}-37 q^{13}-12 q^{12}+31 q^{11}+19 q^{10}-25 q^9-21 q^8+17 q^7+22 q^6-10 q^5-18 q^4+2 q^3+15 q^2+q-9-3 q^{-1} +5 q^{-2} +2 q^{-3} - q^{-4} -2 q^{-5} + q^{-6} </math> |
{{Computer Talk Header}}
coloured_jones_4 = <math>q^{78}-2 q^{77}+q^{76}+q^{75}-2 q^{74}+4 q^{73}-7 q^{72}+3 q^{71}+3 q^{70}-5 q^{69}+13 q^{68}-17 q^{67}+4 q^{66}+3 q^{65}-11 q^{64}+32 q^{63}-23 q^{62}+6 q^{61}-11 q^{60}-30 q^{59}+63 q^{58}-11 q^{57}+17 q^{56}-40 q^{55}-74 q^{54}+90 q^{53}+21 q^{52}+50 q^{51}-65 q^{50}-134 q^{49}+91 q^{48}+47 q^{47}+96 q^{46}-62 q^{45}-178 q^{44}+72 q^{43}+43 q^{42}+126 q^{41}-39 q^{40}-180 q^{39}+56 q^{38}+10 q^{37}+128 q^{36}-11 q^{35}-154 q^{34}+46 q^{33}-25 q^{32}+112 q^{31}+14 q^{30}-117 q^{29}+36 q^{28}-58 q^{27}+89 q^{26}+41 q^{25}-72 q^{24}+23 q^{23}-87 q^{22}+58 q^{21}+58 q^{20}-22 q^{19}+23 q^{18}-103 q^{17}+16 q^{16}+50 q^{15}+17 q^{14}+41 q^{13}-89 q^{12}-19 q^{11}+19 q^{10}+27 q^9+57 q^8-51 q^7-27 q^6-10 q^5+10 q^4+49 q^3-13 q^2-13 q-17-6 q^{-1} +25 q^{-2} + q^{-3} -7 q^{-5} -7 q^{-6} +6 q^{-7} + q^{-8} +2 q^{-9} - q^{-10} -2 q^{-11} + q^{-12} </math> |

coloured_jones_5 = <math>-q^{115}+2 q^{114}-q^{113}-q^{112}+2 q^{111}-q^{110}-2 q^{109}+5 q^{108}-q^{107}-4 q^{106}+2 q^{105}-3 q^{104}-3 q^{103}+13 q^{102}+4 q^{101}-7 q^{100}-8 q^{99}-13 q^{98}-4 q^{97}+27 q^{96}+27 q^{95}-q^{94}-28 q^{93}-50 q^{92}-22 q^{91}+49 q^{90}+85 q^{89}+40 q^{88}-51 q^{87}-135 q^{86}-92 q^{85}+71 q^{84}+190 q^{83}+145 q^{82}-52 q^{81}-263 q^{80}-232 q^{79}+45 q^{78}+320 q^{77}+314 q^{76}+6 q^{75}-367 q^{74}-414 q^{73}-58 q^{72}+392 q^{71}+492 q^{70}+121 q^{69}-384 q^{68}-545 q^{67}-198 q^{66}+366 q^{65}+584 q^{64}+232 q^{63}-325 q^{62}-568 q^{61}-284 q^{60}+287 q^{59}+568 q^{58}+270 q^{57}-242 q^{56}-512 q^{55}-296 q^{54}+216 q^{53}+489 q^{52}+257 q^{51}-172 q^{50}-425 q^{49}-279 q^{48}+146 q^{47}+400 q^{46}+240 q^{45}-98 q^{44}-328 q^{43}-261 q^{42}+59 q^{41}+294 q^{40}+222 q^{39}-9 q^{38}-207 q^{37}-224 q^{36}-36 q^{35}+157 q^{34}+174 q^{33}+69 q^{32}-67 q^{31}-141 q^{30}-94 q^{29}+15 q^{28}+79 q^{27}+88 q^{26}+46 q^{25}-23 q^{24}-73 q^{23}-69 q^{22}-36 q^{21}+37 q^{20}+81 q^{19}+70 q^{18}+9 q^{17}-61 q^{16}-95 q^{15}-47 q^{14}+35 q^{13}+86 q^{12}+73 q^{11}+7 q^{10}-70 q^9-80 q^8-32 q^7+36 q^6+70 q^5+49 q^4-8 q^3-48 q^2-48 q-16+28 q^{-1} +39 q^{-2} +18 q^{-3} -5 q^{-4} -23 q^{-5} -22 q^{-6} -2 q^{-7} +14 q^{-8} +10 q^{-9} +5 q^{-10} -9 q^{-12} -5 q^{-13} +2 q^{-14} +2 q^{-15} + q^{-16} +2 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} </math> |
<table>
coloured_jones_6 = <math>q^{159}-2 q^{158}+q^{157}+q^{156}-2 q^{155}+q^{154}-q^{153}+4 q^{152}-7 q^{151}+2 q^{150}+7 q^{149}-6 q^{148}+4 q^{147}-3 q^{146}+4 q^{145}-20 q^{144}+5 q^{143}+24 q^{142}-7 q^{141}+12 q^{140}-8 q^{139}-5 q^{138}-54 q^{137}+7 q^{136}+58 q^{135}+7 q^{134}+40 q^{133}-14 q^{132}-37 q^{131}-130 q^{130}-6 q^{129}+116 q^{128}+63 q^{127}+116 q^{126}-12 q^{125}-120 q^{124}-291 q^{123}-64 q^{122}+209 q^{121}+215 q^{120}+297 q^{119}+20 q^{118}-292 q^{117}-608 q^{116}-232 q^{115}+323 q^{114}+511 q^{113}+664 q^{112}+152 q^{111}-524 q^{110}-1111 q^{109}-601 q^{108}+354 q^{107}+881 q^{106}+1227 q^{105}+488 q^{104}-661 q^{103}-1664 q^{102}-1161 q^{101}+161 q^{100}+1111 q^{99}+1803 q^{98}+1003 q^{97}-535 q^{96}-2011 q^{95}-1700 q^{94}-220 q^{93}+1046 q^{92}+2132 q^{91}+1460 q^{90}-213 q^{89}-2027 q^{88}-1968 q^{87}-553 q^{86}+788 q^{85}+2129 q^{84}+1654 q^{83}+73 q^{82}-1842 q^{81}-1932 q^{80}-684 q^{79}+546 q^{78}+1940 q^{77}+1608 q^{76}+225 q^{75}-1630 q^{74}-1755 q^{73}-687 q^{72}+371 q^{71}+1717 q^{70}+1490 q^{69}+337 q^{68}-1415 q^{67}-1568 q^{66}-707 q^{65}+179 q^{64}+1469 q^{63}+1388 q^{62}+513 q^{61}-1124 q^{60}-1363 q^{59}-775 q^{58}-91 q^{57}+1136 q^{56}+1257 q^{55}+729 q^{54}-726 q^{53}-1067 q^{52}-805 q^{51}-391 q^{50}+697 q^{49}+1007 q^{48}+865 q^{47}-291 q^{46}-644 q^{45}-685 q^{44}-594 q^{43}+226 q^{42}+607 q^{41}+804 q^{40}+36 q^{39}-180 q^{38}-384 q^{37}-572 q^{36}-118 q^{35}+159 q^{34}+522 q^{33}+117 q^{32}+149 q^{31}-21 q^{30}-318 q^{29}-196 q^{28}-138 q^{27}+171 q^{26}-44 q^{25}+198 q^{24}+193 q^{23}-8 q^{22}-42 q^{21}-155 q^{20}-24 q^{19}-240 q^{18}+32 q^{17}+150 q^{16}+133 q^{15}+124 q^{14}+5 q^{13}+12 q^{12}-266 q^{11}-113 q^{10}-15 q^9+67 q^8+129 q^7+110 q^6+121 q^5-133 q^4-103 q^3-94 q^2-36 q+25+78 q^{-1} +135 q^{-2} -13 q^{-3} -19 q^{-4} -58 q^{-5} -49 q^{-6} -38 q^{-7} +8 q^{-8} +71 q^{-9} +13 q^{-10} +19 q^{-11} -8 q^{-12} -15 q^{-13} -29 q^{-14} -14 q^{-15} +19 q^{-16} +2 q^{-17} +11 q^{-18} +4 q^{-19} +3 q^{-20} -9 q^{-21} -7 q^{-22} +4 q^{-23} -2 q^{-24} +2 q^{-25} + q^{-26} +2 q^{-27} - q^{-28} -2 q^{-29} + q^{-30} </math> |
<tr valign=top>
coloured_jones_7 = <math>-q^{210}+2 q^{209}-q^{208}-q^{207}+2 q^{206}-q^{205}+q^{204}-q^{203}-2 q^{202}+6 q^{201}-5 q^{200}-3 q^{199}+5 q^{198}-4 q^{197}+5 q^{196}+q^{195}-2 q^{194}+13 q^{193}-17 q^{192}-12 q^{191}+7 q^{190}-7 q^{189}+18 q^{188}+9 q^{187}+6 q^{186}+24 q^{185}-40 q^{184}-38 q^{183}-q^{182}-16 q^{181}+48 q^{180}+38 q^{179}+26 q^{178}+43 q^{177}-80 q^{176}-89 q^{175}-39 q^{174}-29 q^{173}+115 q^{172}+113 q^{171}+64 q^{170}+49 q^{169}-172 q^{168}-205 q^{167}-109 q^{166}-16 q^{165}+291 q^{164}+307 q^{163}+161 q^{162}-16 q^{161}-454 q^{160}-521 q^{159}-270 q^{158}+94 q^{157}+726 q^{156}+830 q^{155}+451 q^{154}-162 q^{153}-1113 q^{152}-1304 q^{151}-738 q^{150}+222 q^{149}+1559 q^{148}+1928 q^{147}+1239 q^{146}-185 q^{145}-2093 q^{144}-2729 q^{143}-1871 q^{142}+23 q^{141}+2534 q^{140}+3585 q^{139}+2730 q^{138}+379 q^{137}-2886 q^{136}-4463 q^{135}-3683 q^{134}-935 q^{133}+3000 q^{132}+5166 q^{131}+4652 q^{130}+1697 q^{129}-2859 q^{128}-5677 q^{127}-5533 q^{126}-2501 q^{125}+2526 q^{124}+5901 q^{123}+6162 q^{122}+3261 q^{121}-2021 q^{120}-5841 q^{119}-6578 q^{118}-3889 q^{117}+1516 q^{116}+5635 q^{115}+6687 q^{114}+4265 q^{113}-1042 q^{112}-5271 q^{111}-6611 q^{110}-4495 q^{109}+705 q^{108}+4953 q^{107}+6390 q^{106}+4489 q^{105}-469 q^{104}-4589 q^{103}-6136 q^{102}-4461 q^{101}+335 q^{100}+4346 q^{99}+5844 q^{98}+4336 q^{97}-184 q^{96}-4049 q^{95}-5621 q^{94}-4306 q^{93}+62 q^{92}+3797 q^{91}+5348 q^{90}+4260 q^{89}+198 q^{88}-3430 q^{87}-5137 q^{86}-4318 q^{85}-473 q^{84}+3046 q^{83}+4820 q^{82}+4332 q^{81}+887 q^{80}-2499 q^{79}-4495 q^{78}-4406 q^{77}-1303 q^{76}+1945 q^{75}+4033 q^{74}+4347 q^{73}+1766 q^{72}-1225 q^{71}-3499 q^{70}-4289 q^{69}-2176 q^{68}+559 q^{67}+2853 q^{66}+4003 q^{65}+2500 q^{64}+193 q^{63}-2103 q^{62}-3659 q^{61}-2703 q^{60}-801 q^{59}+1334 q^{58}+3083 q^{57}+2678 q^{56}+1345 q^{55}-519 q^{54}-2433 q^{53}-2499 q^{52}-1659 q^{51}-152 q^{50}+1671 q^{49}+2072 q^{48}+1755 q^{47}+727 q^{46}-940 q^{45}-1537 q^{44}-1615 q^{43}-1031 q^{42}+302 q^{41}+913 q^{40}+1275 q^{39}+1114 q^{38}+143 q^{37}-345 q^{36}-807 q^{35}-963 q^{34}-378 q^{33}-83 q^{32}+347 q^{31}+661 q^{30}+353 q^{29}+327 q^{28}+48 q^{27}-307 q^{26}-204 q^{25}-356 q^{24}-254 q^{23}+4 q^{22}-43 q^{21}+226 q^{20}+308 q^{19}+179 q^{18}+251 q^{17}-33 q^{16}-215 q^{15}-208 q^{14}-365 q^{13}-148 q^{12}+45 q^{11}+132 q^{10}+370 q^9+259 q^8+93 q^7-10 q^6-268 q^5-257 q^4-185 q^3-124 q^2+145 q+207+194 q^{-1} +171 q^{-2} -32 q^{-3} -96 q^{-4} -140 q^{-5} -188 q^{-6} -54 q^{-7} +30 q^{-8} +86 q^{-9} +140 q^{-10} +56 q^{-11} +27 q^{-12} -9 q^{-13} -91 q^{-14} -63 q^{-15} -43 q^{-16} -5 q^{-17} +48 q^{-18} +26 q^{-19} +28 q^{-20} +29 q^{-21} -10 q^{-22} -18 q^{-23} -25 q^{-24} -18 q^{-25} +10 q^{-26} +4 q^{-28} +13 q^{-29} +4 q^{-30} +2 q^{-31} -6 q^{-32} -7 q^{-33} +2 q^{-34} -2 q^{-36} +2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} -2 q^{-41} + q^{-42} </math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 11]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 11]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 11]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[13, 1, 14, 18], X[5, 15, 6, 14], X[7, 17, 8, 16], X[15, 7, 16, 6],
X[13, 1, 14, 18], X[5, 15, 6, 14], X[7, 17, 8, 16], X[15, 7, 16, 6],
X[17, 9, 18, 8]]</nowiki></pre></td></tr>
X[17, 9, 18, 8]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 11]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 8, -7, 9, -2, 3, -4, 2, -5, 6, -8, 7, -9, 5]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 11]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 1, -2, 1, 3, -2, 3}]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 11]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 11]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 7 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -6, 8, -7, 9, -2, 3, -4, 2, -5, 6, -8, 7, -9, 5]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 11]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 16, 12, 2, 18, 6, 8]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 11]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 1, -2, 1, 3, -2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 11]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 11]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_11_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 11]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 11]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 7 2 3
7 - t + -- - - - 7 t + 5 t - t
7 - t + -- - - - 7 t + 5 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 11]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 4 z - z - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 11]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 11], Knot[11, NonAlternating, 95]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 11]], KnotSignature[Knot[9, 11]]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, 4}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 4 z - z - z</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 11]][q]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9
<table><tr align=left>
1 - 2 q + 3 q - 4 q + 6 q - 5 q + 5 q - 4 q + 2 q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 11]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 11]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 14 16 20 22 26 28
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 11], Knot[11, NonAlternating, 95]}</nowiki></code></td></tr>
</table>
1 - q + 2 q + 2 q + q + q - q - q - q</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 11]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 11]], KnotSignature[Knot[9, 11]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{33, 4}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 11]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8 9
1 - 2 q + 3 q - 4 q + 6 q - 5 q + 5 q - 4 q + 2 q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 11]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 11]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 8 10 14 16 20 22 26 28
1 - q + 2 q + 2 q + q + q - q - q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 11]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 4 4 4 6
-2 3 -4 -2 z 6 z 4 z 3 z 2 z 4 z z z
-- + -- - a + a - -- + ---- - ---- + ---- + ---- - ---- + -- - --
8 6 8 6 4 2 6 4 2 4
a a a a a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 11]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2
-2 3 -4 -2 z 2 z 2 z 2 z z z 4 z 6 z
-2 3 -4 -2 z 2 z 2 z 2 z z z 4 z 6 z
-- - -- - a - a - --- + --- + --- - --- - -- - --- + ---- + ---- +
-- - -- - a - a - --- + --- + --- - --- - -- - --- + ---- + ---- +
Line 113: Line 210:
---- + ---- + -- + --
---- + ---- + -- + --
5 3 6 4
5 3 6 4
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 11]], Vassiliev[3][Knot[9, 11]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 9}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 11]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 11]], Vassiliev[3][Knot[9, 11]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 11]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3
3 5 1 q q 5 7 7 2 9 2
3 5 1 q q 5 7 7 2 9 2
2 q + 2 q + ---- + - + -- + 3 q t + q t + 3 q t + 3 q t +
2 q + 2 q + ---- + - + -- + 3 q t + q t + 3 q t + 3 q t +
Line 127: Line 234:
15 6 17 6 19 7
15 6 17 6 19 7
q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 11], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6 7
-1 + q - - + 6 q - 4 q - 6 q + 13 q - 3 q - 14 q + 18 q -
q
9 10 11 12 13 14 15 16
22 q + 21 q + 5 q - 26 q + 19 q + 9 q - 25 q + 14 q +
17 18 19 20 21 22 23 24 25
7 q - 17 q + 9 q + 3 q - 8 q + 4 q + q - 2 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 21:06, 9 March 2007

9 10.gif

9_10

9 12.gif

9_12

9 11.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 11's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 11 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X13,1,14,18 X5,15,6,14 X7,17,8,16 X15,7,16,6 X17,9,18,8
Gauss code -1, 4, -3, 1, -6, 8, -7, 9, -2, 3, -4, 2, -5, 6, -8, 7, -9, 5
Dowker-Thistlethwaite code 4 10 14 16 12 2 18 6 8
Conway Notation [4122]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 11 ML.gif 9 11 AP.gif
[{11, 7}, {8, 6}, {7, 10}, {1, 8}, {9, 11}, {10, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 9}]

[edit Notes on presentations of 9 11]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-12]
Hyperbolic Volume 8.28859
A-Polynomial See Data:9 11/A-polynomial

[edit Notes for 9 11's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 4

[edit Notes for 9 11's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n95,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, 9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 11. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
19         1-1
17        1 1
15       31 -2
13      21  1
11     33   0
9    32    1
7   13     2
5  23      -1
3 12       1
1 1        -1
-11         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials