9 27: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->

{{Rolfsen Knot Page|
<!-- provide an anchor so we can return to the top of the page -->
n = 9 |
<span id="top"></span>
k = 27 |

KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-4,7,-6,8,-9,2,-3,4,-5,6,-7,5,-8,3/goTop.html |
<!-- this relies on transclusion for next and previous links -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
{| align=left
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
|- valign=top
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
|[[Image:{{PAGENAME}}.gif]]
</table> |
|{{Rolfsen Knot Site Links|n=9|k=27|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-4,7,-6,8,-9,2,-3,4,-5,6,-7,5,-8,3/goTop.html}}
braid_crossings = 9 |
|{{:{{PAGENAME}} Quick Notes}}
braid_width = 4 |
|}
braid_index = 4 |

same_alexander = [[K11n4]], [[K11n21]], [[K11n172]], |
<br style="clear:both" />
same_jones = [[K11n83]], |

khovanov_table = <table border=1>
{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
Line 47: Line 39:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table> |
coloured_jones_2 = <math>q^{12}-3 q^{11}+q^{10}+8 q^9-14 q^8+2 q^7+25 q^6-34 q^5-q^4+50 q^3-52 q^2-9 q+70-56 q^{-1} -18 q^{-2} +70 q^{-3} -44 q^{-4} -23 q^{-5} +54 q^{-6} -24 q^{-7} -21 q^{-8} +30 q^{-9} -7 q^{-10} -12 q^{-11} +10 q^{-12} -3 q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>q^{24}-3 q^{23}+q^{22}+4 q^{21}+q^{20}-11 q^{19}-q^{18}+22 q^{17}+q^{16}-38 q^{15}-6 q^{14}+64 q^{13}+14 q^{12}-95 q^{11}-31 q^{10}+132 q^9+56 q^8-169 q^7-88 q^6+199 q^5+126 q^4-224 q^3-156 q^2+227 q+195-232 q^{-1} -208 q^{-2} +209 q^{-3} +227 q^{-4} -189 q^{-5} -225 q^{-6} +151 q^{-7} +224 q^{-8} -116 q^{-9} -207 q^{-10} +74 q^{-11} +186 q^{-12} -39 q^{-13} -154 q^{-14} +6 q^{-15} +122 q^{-16} +13 q^{-17} -86 q^{-18} -23 q^{-19} +54 q^{-20} +24 q^{-21} -29 q^{-22} -20 q^{-23} +14 q^{-24} +12 q^{-25} -5 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math> |
{{Computer Talk Header}}
coloured_jones_4 = <math>q^{40}-3 q^{39}+q^{38}+4 q^{37}-3 q^{36}+4 q^{35}-14 q^{34}+7 q^{33}+18 q^{32}-15 q^{31}+8 q^{30}-47 q^{29}+27 q^{28}+68 q^{27}-33 q^{26}-8 q^{25}-139 q^{24}+63 q^{23}+197 q^{22}-17 q^{21}-53 q^{20}-353 q^{19}+66 q^{18}+429 q^{17}+115 q^{16}-81 q^{15}-714 q^{14}-48 q^{13}+694 q^{12}+392 q^{11}-3 q^{10}-1129 q^9-297 q^8+866 q^7+714 q^6+201 q^5-1432 q^4-585 q^3+870 q^2+944 q+457-1532 q^{-1} -800 q^{-2} +734 q^{-3} +1017 q^{-4} +669 q^{-5} -1425 q^{-6} -895 q^{-7} +499 q^{-8} +944 q^{-9} +819 q^{-10} -1153 q^{-11} -884 q^{-12} +205 q^{-13} +752 q^{-14} +890 q^{-15} -768 q^{-16} -761 q^{-17} -83 q^{-18} +467 q^{-19} +840 q^{-20} -363 q^{-21} -528 q^{-22} -260 q^{-23} +163 q^{-24} +642 q^{-25} -63 q^{-26} -252 q^{-27} -267 q^{-28} -44 q^{-29} +367 q^{-30} +55 q^{-31} -49 q^{-32} -156 q^{-33} -100 q^{-34} +142 q^{-35} +46 q^{-36} +26 q^{-37} -52 q^{-38} -62 q^{-39} +35 q^{-40} +12 q^{-41} +20 q^{-42} -7 q^{-43} -19 q^{-44} +5 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>q^{60}-3 q^{59}+q^{58}+4 q^{57}-3 q^{56}+q^{54}-6 q^{53}+3 q^{52}+13 q^{51}-8 q^{50}-13 q^{49}-2 q^{48}+2 q^{47}+25 q^{46}+30 q^{45}-19 q^{44}-68 q^{43}-51 q^{42}+32 q^{41}+123 q^{40}+121 q^{39}-30 q^{38}-231 q^{37}-254 q^{36}+15 q^{35}+376 q^{34}+459 q^{33}+84 q^{32}-543 q^{31}-808 q^{30}-278 q^{29}+720 q^{28}+1255 q^{27}+638 q^{26}-825 q^{25}-1825 q^{24}-1180 q^{23}+823 q^{22}+2440 q^{21}+1903 q^{20}-659 q^{19}-3026 q^{18}-2764 q^{17}+305 q^{16}+3524 q^{15}+3676 q^{14}+210 q^{13}-3853 q^{12}-4563 q^{11}-846 q^{10}+4026 q^9+5300 q^8+1523 q^7-3963 q^6-5930 q^5-2174 q^4+3834 q^3+6272 q^2+2743 q-3480-6523 q^{-1} -3235 q^{-2} +3191 q^{-3} +6486 q^{-4} +3588 q^{-5} -2702 q^{-6} -6399 q^{-7} -3884 q^{-8} +2288 q^{-9} +6096 q^{-10} +4060 q^{-11} -1711 q^{-12} -5728 q^{-13} -4206 q^{-14} +1173 q^{-15} +5184 q^{-16} +4245 q^{-17} -519 q^{-18} -4563 q^{-19} -4205 q^{-20} -92 q^{-21} +3789 q^{-22} +4034 q^{-23} +713 q^{-24} -2966 q^{-25} -3728 q^{-26} -1198 q^{-27} +2075 q^{-28} +3261 q^{-29} +1578 q^{-30} -1246 q^{-31} -2685 q^{-32} -1725 q^{-33} +502 q^{-34} +2018 q^{-35} +1703 q^{-36} +64 q^{-37} -1370 q^{-38} -1486 q^{-39} -432 q^{-40} +789 q^{-41} +1171 q^{-42} +583 q^{-43} -330 q^{-44} -818 q^{-45} -584 q^{-46} +40 q^{-47} +500 q^{-48} +470 q^{-49} +108 q^{-50} -243 q^{-51} -334 q^{-52} -153 q^{-53} +93 q^{-54} +203 q^{-55} +125 q^{-56} -12 q^{-57} -95 q^{-58} -94 q^{-59} -19 q^{-60} +48 q^{-61} +51 q^{-62} +12 q^{-63} -9 q^{-64} -21 q^{-65} -20 q^{-66} +7 q^{-67} +12 q^{-68} +2 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> |
<table>
coloured_jones_6 = <math>q^{84}-3 q^{83}+q^{82}+4 q^{81}-3 q^{80}-3 q^{78}+9 q^{77}-10 q^{76}-2 q^{75}+20 q^{74}-18 q^{73}-7 q^{72}-7 q^{71}+40 q^{70}-12 q^{69}-5 q^{68}+48 q^{67}-73 q^{66}-57 q^{65}-29 q^{64}+139 q^{63}+38 q^{62}+43 q^{61}+114 q^{60}-242 q^{59}-269 q^{58}-176 q^{57}+330 q^{56}+284 q^{55}+350 q^{54}+381 q^{53}-586 q^{52}-932 q^{51}-826 q^{50}+414 q^{49}+873 q^{48}+1420 q^{47}+1430 q^{46}-839 q^{45}-2346 q^{44}-2782 q^{43}-428 q^{42}+1474 q^{41}+3757 q^{40}+4381 q^{39}+103 q^{38}-4115 q^{37}-6737 q^{36}-3643 q^{35}+708 q^{34}+6888 q^{33}+10003 q^{32}+3935 q^{31}-4578 q^{30}-11996 q^{29}-9990 q^{28}-3275 q^{27}+8867 q^{26}+17250 q^{25}+11236 q^{24}-1796 q^{23}-16228 q^{22}-18033 q^{21}-10774 q^{20}+7676 q^{19}+23398 q^{18}+20147 q^{17}+4318 q^{16}-17280 q^{15}-24815 q^{14}-19617 q^{13}+3325 q^{12}+26221 q^{11}+27600 q^{10}+11576 q^9-15114 q^8-28245 q^7-26869 q^6-2200 q^5+25655 q^4+31734 q^3+17494 q^2-11382 q-28381-31040 q^{-1} -6955 q^{-2} +23051 q^{-3} +32709 q^{-4} +21116 q^{-5} -7491 q^{-6} -26411 q^{-7} -32451 q^{-8} -10430 q^{-9} +19418 q^{-10} +31516 q^{-11} +22950 q^{-12} -3607 q^{-13} -23043 q^{-14} -31967 q^{-15} -13222 q^{-16} +14740 q^{-17} +28621 q^{-18} +23696 q^{-19} +801 q^{-20} -18128 q^{-21} -29822 q^{-22} -15749 q^{-23} +8657 q^{-24} +23742 q^{-25} +23215 q^{-26} +5727 q^{-27} -11405 q^{-28} -25504 q^{-29} -17374 q^{-30} +1624 q^{-31} +16648 q^{-32} +20570 q^{-33} +9923 q^{-34} -3615 q^{-35} -18663 q^{-36} -16662 q^{-37} -4583 q^{-38} +8272 q^{-39} +15172 q^{-40} +11451 q^{-41} +3148 q^{-42} -10332 q^{-43} -12819 q^{-44} -7710 q^{-45} +946 q^{-46} +8115 q^{-47} +9410 q^{-48} +6546 q^{-49} -3018 q^{-50} -7051 q^{-51} -6939 q^{-52} -2991 q^{-53} +1982 q^{-54} +5182 q^{-55} +6032 q^{-56} +1013 q^{-57} -2007 q^{-58} -3888 q^{-59} -3236 q^{-60} -1163 q^{-61} +1418 q^{-62} +3455 q^{-63} +1696 q^{-64} +487 q^{-65} -1130 q^{-66} -1693 q^{-67} -1520 q^{-68} -326 q^{-69} +1202 q^{-70} +870 q^{-71} +799 q^{-72} +80 q^{-73} -392 q^{-74} -797 q^{-75} -496 q^{-76} +203 q^{-77} +167 q^{-78} +380 q^{-79} +208 q^{-80} +65 q^{-81} -238 q^{-82} -227 q^{-83} -37 q^{-85} +89 q^{-86} +80 q^{-87} +79 q^{-88} -44 q^{-89} -58 q^{-90} - q^{-91} -29 q^{-92} +9 q^{-93} +12 q^{-94} +29 q^{-95} -7 q^{-96} -12 q^{-97} +5 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math> |
<tr valign=top>
coloured_jones_7 = <math>q^{112}-3 q^{111}+q^{110}+4 q^{109}-3 q^{108}-3 q^{106}+5 q^{105}+5 q^{104}-15 q^{103}+5 q^{102}+10 q^{101}-12 q^{100}-q^{99}-8 q^{98}+23 q^{97}+34 q^{96}-39 q^{95}-2 q^{94}-2 q^{93}-52 q^{92}-4 q^{91}-17 q^{90}+92 q^{89}+152 q^{88}-35 q^{87}-30 q^{86}-116 q^{85}-239 q^{84}-75 q^{83}-27 q^{82}+301 q^{81}+560 q^{80}+197 q^{79}+q^{78}-497 q^{77}-943 q^{76}-585 q^{75}-243 q^{74}+792 q^{73}+1766 q^{72}+1377 q^{71}+671 q^{70}-1120 q^{69}-2892 q^{68}-2758 q^{67}-1804 q^{66}+1140 q^{65}+4477 q^{64}+5209 q^{63}+4045 q^{62}-629 q^{61}-6374 q^{60}-8732 q^{59}-7897 q^{58}-1353 q^{57}+7965 q^{56}+13612 q^{55}+14172 q^{54}+5467 q^{53}-8715 q^{52}-19328 q^{51}-22895 q^{50}-12804 q^{49}+7179 q^{48}+25168 q^{47}+34266 q^{46}+24009 q^{45}-2397 q^{44}-29861 q^{43}-47360 q^{42}-39195 q^{41}-6809 q^{40}+31862 q^{39}+60924 q^{38}+57869 q^{37}+20902 q^{36}-29940 q^{35}-73286 q^{34}-78632 q^{33}-39407 q^{32}+23183 q^{31}+82637 q^{30}+99660 q^{29}+61251 q^{28}-11558 q^{27}-87846 q^{26}-118947 q^{25}-84539 q^{24}-4031 q^{23}+88237 q^{22}+134783 q^{21}+107278 q^{20}+22113 q^{19}-84114 q^{18}-146119 q^{17}-127548 q^{16}-41030 q^{15}+76399 q^{14}+152853 q^{13}+144158 q^{12}+58779 q^{11}-66536 q^{10}-154976 q^9-156376 q^8-74618 q^7+55602 q^6+154039 q^5+164612 q^4+87139 q^3-45095 q^2-150246 q-168875-97203 q^{-1} +35059 q^{-2} +145379 q^{-3} +170719 q^{-4} +104201 q^{-5} -26401 q^{-6} -139098 q^{-7} -170054 q^{-8} -109677 q^{-9} +17979 q^{-10} +132477 q^{-11} +168325 q^{-12} +113539 q^{-13} -10181 q^{-14} -124683 q^{-15} -164926 q^{-16} -116950 q^{-17} +1602 q^{-18} +115820 q^{-19} +160641 q^{-20} +119763 q^{-21} +7502 q^{-22} -105075 q^{-23} -154443 q^{-24} -122222 q^{-25} -18015 q^{-26} +92245 q^{-27} +146427 q^{-28} +123742 q^{-29} +29301 q^{-30} -76916 q^{-31} -135600 q^{-32} -123865 q^{-33} -41201 q^{-34} +59434 q^{-35} +121883 q^{-36} +121506 q^{-37} +52501 q^{-38} -40112 q^{-39} -104949 q^{-40} -116130 q^{-41} -62182 q^{-42} +20326 q^{-43} +85363 q^{-44} +106842 q^{-45} +68749 q^{-46} -1236 q^{-47} -63810 q^{-48} -93870 q^{-49} -71343 q^{-50} -15247 q^{-51} +42006 q^{-52} +77551 q^{-53} +69026 q^{-54} +27826 q^{-55} -21387 q^{-56} -59219 q^{-57} -62302 q^{-58} -35356 q^{-59} +4051 q^{-60} +40538 q^{-61} +51752 q^{-62} +37531 q^{-63} +8960 q^{-64} -23359 q^{-65} -39145 q^{-66} -34988 q^{-67} -16789 q^{-68} +9320 q^{-69} +26200 q^{-70} +29011 q^{-71} +19680 q^{-72} +628 q^{-73} -14663 q^{-74} -21232 q^{-75} -18685 q^{-76} -6407 q^{-77} +5811 q^{-78} +13504 q^{-79} +15164 q^{-80} +8382 q^{-81} +7 q^{-82} -6901 q^{-83} -10683 q^{-84} -7935 q^{-85} -2965 q^{-86} +2343 q^{-87} +6480 q^{-88} +6056 q^{-89} +3688 q^{-90} +353 q^{-91} -3173 q^{-92} -3898 q^{-93} -3265 q^{-94} -1477 q^{-95} +1172 q^{-96} +2100 q^{-97} +2246 q^{-98} +1532 q^{-99} -61 q^{-100} -810 q^{-101} -1330 q^{-102} -1265 q^{-103} -306 q^{-104} +231 q^{-105} +640 q^{-106} +754 q^{-107} +306 q^{-108} +120 q^{-109} -213 q^{-110} -468 q^{-111} -246 q^{-112} -120 q^{-113} +78 q^{-114} +196 q^{-115} +93 q^{-116} +117 q^{-117} +43 q^{-118} -97 q^{-119} -75 q^{-120} -65 q^{-121} -5 q^{-122} +43 q^{-123} -3 q^{-124} +29 q^{-125} +29 q^{-126} -9 q^{-127} -12 q^{-128} -20 q^{-129} -2 q^{-130} +12 q^{-131} -5 q^{-132} +7 q^{-134} -5 q^{-137} +3 q^{-139} - q^{-140} </math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 27]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 27]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12],
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 27]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12],
X[13, 17, 14, 16], X[7, 14, 8, 15], X[15, 6, 16, 7], X[17, 9, 18, 8],
X[13, 17, 14, 16], X[7, 14, 8, 15], X[15, 6, 16, 7], X[17, 9, 18, 8],
X[9, 2, 10, 3]]</nowiki></pre></td></tr>
X[9, 2, 10, 3]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 27]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -4, 7, -6, 8, -9, 2, -3, 4, -5, 6, -7, 5, -8, 3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 27]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, 2, 2, -3, 2, -3}]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 27]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 27]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 11 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 1, -4, 7, -6, 8, -9, 2, -3, 4, -5, 6, -7, 5, -8, 3]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 27]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 2, 18, 16, 6, 8]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 27]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, 2, 2, -3, 2, -3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 27]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 27]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_27_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 27]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 2, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 27]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 11 2 3
15 - t + -- - -- - 11 t + 5 t - t
15 - t + -- - -- - 11 t + 5 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 27]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 - z - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 27]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 27], Knot[11, NonAlternating, 4],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6
1 - z - z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 27], Knot[11, NonAlternating, 4],
Knot[11, NonAlternating, 21], Knot[11, NonAlternating, 172]}</nowiki></pre></td></tr>
Knot[11, NonAlternating, 21], Knot[11, NonAlternating, 172]}</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 27]], KnotSignature[Knot[9, 27]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{49, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 27]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 5 7 8 2 3 4
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 27]], KnotSignature[Knot[9, 27]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{49, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 27]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 5 7 8 2 3 4
9 - q + -- - -- + -- - - - 7 q + 5 q - 3 q + q
9 - q + -- - -- + -- - - - 7 q + 5 q - 3 q + q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 27], Knot[11, NonAlternating, 83]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 27]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 -10 2 2 2 4 8 10 12
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 27], Knot[11, NonAlternating, 83]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 27]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -12 -10 2 2 2 4 8 10 12
-1 - q + q - q + -- + -- + 2 q - 2 q + q - q + q
-1 - q + q - q + -- + -- + 2 q - 2 q + q - q + q
8 2
8 2
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 27]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 27]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
-2 2 4 2 2 z 2 2 4 2 4 z
-2 + a + 3 a - a - 6 z + ---- + 5 a z - a z - 4 z + -- +
2 2
a a
2 4 6
2 a z - z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 27]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-2 2 4 z 2 z 3 5 2 z
-2 2 4 z 2 z 3 5 2 z
-2 - a - 3 a - a + -- + --- + 2 a z + 2 a z + a z + 12 z - -- +
-2 - a - 3 a - a + -- + --- + 2 a z + 2 a z + a z + 12 z - -- +
Line 119: Line 219:
7 z + ---- + 6 a z + 3 a z + ---- + 6 a z + 3 a z + z + a z
7 z + ---- + 6 a z + 3 a z + ---- + 6 a z + 3 a z + z + a z
2 a
2 a
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 27]], Vassiliev[3][Knot[9, 27]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 27]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 2 1 3 2 4 3
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 27]], Vassiliev[3][Knot[9, 27]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 27]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 1 2 1 3 2 4 3
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 134: Line 244:
9 4
9 4
q t</nowiki></pre></td></tr>
q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 27], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 10 12 7 30 21 24 54 23 44 70
70 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- -
14 12 11 10 9 8 7 6 5 4 3
q q q q q q q q q q q
18 56 2 3 4 5 6 7 8
-- - -- - 9 q - 52 q + 50 q - q - 34 q + 25 q + 2 q - 14 q +
2 q
q
9 10 11 12
8 q + q - 3 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:04, 1 September 2005

9 26.gif

9_26

9 28.gif

9_28

9 27.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 27's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 27 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X13,17,14,16 X7,14,8,15 X15,6,16,7 X17,9,18,8 X9,2,10,3
Gauss code -1, 9, -2, 1, -4, 7, -6, 8, -9, 2, -3, 4, -5, 6, -7, 5, -8, 3
Dowker-Thistlethwaite code 4 10 12 14 2 18 16 6 8
Conway Notation [212112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 27 ML.gif 9 27 AP.gif
[{11, 7}, {1, 9}, {8, 10}, {9, 11}, {10, 4}, {7, 3}, {5, 1}, {4, 6}, {2, 5}, {3, 8}, {6, 2}]

[edit Notes on presentations of 9 27]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 11.
A-Polynomial See Data:9 27/A-polynomial

[edit Notes for 9 27's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 27's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 49, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n4, K11n21, K11n172,}

Same Jones Polynomial (up to mirroring, ): {K11n83,}

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 27. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        2 -2
5       31 2
3      42  -2
1     53   2
-1    45    1
-3   34     -1
-5  24      2
-7 13       -2
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials