10 52: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
m (Reverted edits by DarerRacel (Talk); changed back to last version by ScottTestRobot) |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 52 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,3,-1,9,-2,5,-6,7,-8,10,-3,4,-5,8,-7,6,-4/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=52|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,3,-1,9,-2,5,-6,7,-8,10,-3,4,-5,8,-7,6,-4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_23]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_23]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 72: | Line 40: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{17}-3 q^{16}+3 q^{15}+4 q^{14}-15 q^{13}+14 q^{12}+9 q^{11}-37 q^{10}+31 q^9+17 q^8-60 q^7+41 q^6+30 q^5-73 q^4+35 q^3+43 q^2-70 q+20+46 q^{-1} -52 q^{-2} +3 q^{-3} +37 q^{-4} -28 q^{-5} -6 q^{-6} +21 q^{-7} -9 q^{-8} -6 q^{-9} +7 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math> | |
|||
coloured_jones_3 = <math>-q^{33}+3 q^{32}-3 q^{31}-q^{30}+3 q^{29}+4 q^{28}-9 q^{27}-4 q^{26}+19 q^{25}+2 q^{24}-35 q^{23}+5 q^{22}+53 q^{21}-9 q^{20}-85 q^{19}+20 q^{18}+117 q^{17}-22 q^{16}-156 q^{15}+18 q^{14}+190 q^{13}-6 q^{12}-210 q^{11}-24 q^{10}+228 q^9+47 q^8-216 q^7-88 q^6+211 q^5+107 q^4-173 q^3-145 q^2+155 q+150-108 q^{-1} -169 q^{-2} +80 q^{-3} +160 q^{-4} -35 q^{-5} -155 q^{-6} +6 q^{-7} +130 q^{-8} +26 q^{-9} -105 q^{-10} -43 q^{-11} +73 q^{-12} +49 q^{-13} -41 q^{-14} -48 q^{-15} +20 q^{-16} +34 q^{-17} -2 q^{-18} -24 q^{-19} -2 q^{-20} +11 q^{-21} +5 q^{-22} -6 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{17}-3 q^{16}+3 q^{15}+4 q^{14}-15 q^{13}+14 q^{12}+9 q^{11}-37 q^{10}+31 q^9+17 q^8-60 q^7+41 q^6+30 q^5-73 q^4+35 q^3+43 q^2-70 q+20+46 q^{-1} -52 q^{-2} +3 q^{-3} +37 q^{-4} -28 q^{-5} -6 q^{-6} +21 q^{-7} -9 q^{-8} -6 q^{-9} +7 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math>|J3=<math>-q^{33}+3 q^{32}-3 q^{31}-q^{30}+3 q^{29}+4 q^{28}-9 q^{27}-4 q^{26}+19 q^{25}+2 q^{24}-35 q^{23}+5 q^{22}+53 q^{21}-9 q^{20}-85 q^{19}+20 q^{18}+117 q^{17}-22 q^{16}-156 q^{15}+18 q^{14}+190 q^{13}-6 q^{12}-210 q^{11}-24 q^{10}+228 q^9+47 q^8-216 q^7-88 q^6+211 q^5+107 q^4-173 q^3-145 q^2+155 q+150-108 q^{-1} -169 q^{-2} +80 q^{-3} +160 q^{-4} -35 q^{-5} -155 q^{-6} +6 q^{-7} +130 q^{-8} +26 q^{-9} -105 q^{-10} -43 q^{-11} +73 q^{-12} +49 q^{-13} -41 q^{-14} -48 q^{-15} +20 q^{-16} +34 q^{-17} -2 q^{-18} -24 q^{-19} -2 q^{-20} +11 q^{-21} +5 q^{-22} -6 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math>|J4=<math>q^{54}-3 q^{53}+3 q^{52}+q^{51}-6 q^{50}+8 q^{49}-9 q^{48}+10 q^{47}-2 q^{46}-22 q^{45}+36 q^{44}-19 q^{43}+15 q^{42}-20 q^{41}-51 q^{40}+111 q^{39}-21 q^{38}-8 q^{37}-91 q^{36}-82 q^{35}+286 q^{34}+19 q^{33}-92 q^{32}-277 q^{31}-149 q^{30}+581 q^{29}+185 q^{28}-178 q^{27}-595 q^{26}-343 q^{25}+880 q^{24}+481 q^{23}-120 q^{22}-888 q^{21}-673 q^{20}+978 q^{19}+743 q^{18}+122 q^{17}-958 q^{16}-977 q^{15}+825 q^{14}+792 q^{13}+416 q^{12}-776 q^{11}-1114 q^{10}+543 q^9+643 q^8+630 q^7-478 q^6-1085 q^5+249 q^4+407 q^3+749 q^2-163 q-955-23 q^{-1} +149 q^{-2} +778 q^{-3} +137 q^{-4} -728 q^{-5} -233 q^{-6} -134 q^{-7} +672 q^{-8} +375 q^{-9} -396 q^{-10} -294 q^{-11} -378 q^{-12} +404 q^{-13} +442 q^{-14} -49 q^{-15} -163 q^{-16} -454 q^{-17} +88 q^{-18} +300 q^{-19} +141 q^{-20} +39 q^{-21} -321 q^{-22} -88 q^{-23} +84 q^{-24} +123 q^{-25} +134 q^{-26} -125 q^{-27} -83 q^{-28} -30 q^{-29} +31 q^{-30} +97 q^{-31} -17 q^{-32} -23 q^{-33} -32 q^{-34} -11 q^{-35} +35 q^{-36} +3 q^{-37} +2 q^{-38} -9 q^{-39} -9 q^{-40} +7 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math>|J5=<math>-q^{80}+3 q^{79}-3 q^{78}-q^{77}+6 q^{76}-5 q^{75}-3 q^{74}+8 q^{73}-4 q^{72}-q^{71}+8 q^{70}-12 q^{69}-11 q^{68}+21 q^{67}+14 q^{66}-5 q^{65}-22 q^{64}-34 q^{63}+7 q^{62}+75 q^{61}+66 q^{60}-59 q^{59}-162 q^{58}-103 q^{57}+133 q^{56}+334 q^{55}+192 q^{54}-276 q^{53}-619 q^{52}-366 q^{51}+470 q^{50}+1080 q^{49}+647 q^{48}-674 q^{47}-1678 q^{46}-1161 q^{45}+821 q^{44}+2461 q^{43}+1860 q^{42}-832 q^{41}-3231 q^{40}-2808 q^{39}+583 q^{38}+3964 q^{37}+3871 q^{36}-94 q^{35}-4443 q^{34}-4915 q^{33}-655 q^{32}+4597 q^{31}+5812 q^{30}+1530 q^{29}-4432 q^{28}-6383 q^{27}-2373 q^{26}+3910 q^{25}+6625 q^{24}+3128 q^{23}-3295 q^{22}-6482 q^{21}-3611 q^{20}+2501 q^{19}+6137 q^{18}+3925 q^{17}-1853 q^{16}-5565 q^{15}-3996 q^{14}+1130 q^{13}+5005 q^{12}+4030 q^{11}-634 q^{10}-4339 q^9-3928 q^8-17 q^7+3764 q^6+3906 q^5+473 q^4-3070 q^3-3745 q^2-1143 q+2397+3633 q^{-1} +1616 q^{-2} -1573 q^{-3} -3292 q^{-4} -2185 q^{-5} +740 q^{-6} +2871 q^{-7} +2475 q^{-8} +147 q^{-9} -2186 q^{-10} -2648 q^{-11} -918 q^{-12} +1415 q^{-13} +2448 q^{-14} +1536 q^{-15} -529 q^{-16} -2055 q^{-17} -1844 q^{-18} -246 q^{-19} +1386 q^{-20} +1846 q^{-21} +874 q^{-22} -681 q^{-23} -1559 q^{-24} -1177 q^{-25} +13 q^{-26} +1052 q^{-27} +1218 q^{-28} +471 q^{-29} -529 q^{-30} -995 q^{-31} -681 q^{-32} +44 q^{-33} +644 q^{-34} +702 q^{-35} +239 q^{-36} -302 q^{-37} -520 q^{-38} -362 q^{-39} +21 q^{-40} +326 q^{-41} +328 q^{-42} +110 q^{-43} -121 q^{-44} -234 q^{-45} -155 q^{-46} +16 q^{-47} +120 q^{-48} +120 q^{-49} +50 q^{-50} -50 q^{-51} -81 q^{-52} -39 q^{-53} +2 q^{-54} +32 q^{-55} +40 q^{-56} +8 q^{-57} -19 q^{-58} -13 q^{-59} -8 q^{-60} -2 q^{-61} +11 q^{-62} +7 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math>|J6=<math>q^{111}-3 q^{110}+3 q^{109}+q^{108}-6 q^{107}+5 q^{106}+4 q^{104}-14 q^{103}+7 q^{102}+15 q^{101}-26 q^{100}+18 q^{99}+5 q^{98}-5 q^{97}-37 q^{96}+22 q^{95}+59 q^{94}-62 q^{93}+23 q^{92}-6 q^{91}-42 q^{90}-55 q^{89}+123 q^{88}+192 q^{87}-164 q^{86}-100 q^{85}-170 q^{84}-129 q^{83}+115 q^{82}+596 q^{81}+612 q^{80}-468 q^{79}-798 q^{78}-963 q^{77}-422 q^{76}+901 q^{75}+2241 q^{74}+1962 q^{73}-996 q^{72}-2896 q^{71}-3549 q^{70}-1659 q^{69}+2553 q^{68}+6269 q^{67}+5743 q^{66}-877 q^{65}-6779 q^{64}-9469 q^{63}-5700 q^{62}+3925 q^{61}+12961 q^{60}+13693 q^{59}+2283 q^{58}-10692 q^{57}-18675 q^{56}-14467 q^{55}+1913 q^{54}+19644 q^{53}+25210 q^{52}+10645 q^{51}-10654 q^{50}-27467 q^{49}-26739 q^{48}-5805 q^{47}+21506 q^{46}+35577 q^{45}+22409 q^{44}-4323 q^{43}-30514 q^{42}-37060 q^{41}-16824 q^{40}+16488 q^{39}+39319 q^{38}+31754 q^{37}+5350 q^{36}-26325 q^{35}-40357 q^{34}-25325 q^{33}+8043 q^{32}+35758 q^{31}+34436 q^{30}+12861 q^{29}-18752 q^{28}-36938 q^{27}-28088 q^{26}+1142 q^{25}+29006 q^{24}+31710 q^{23}+16027 q^{22}-12149 q^{21}-31018 q^{20}-27007 q^{19}-2896 q^{18}+22750 q^{17}+27575 q^{16}+16999 q^{15}-7174 q^{14}-25518 q^{13}-25488 q^{12}-6194 q^{11}+17092 q^{10}+24019 q^9+18392 q^8-1873 q^7-19974 q^6-24460 q^5-10547 q^4+10191 q^3+19883 q^2+20150 q+4894-12517 q^{-1} -22066 q^{-2} -15065 q^{-3} +1389 q^{-4} +13095 q^{-5} +19786 q^{-6} +11592 q^{-7} -2785 q^{-8} -16031 q^{-9} -16720 q^{-10} -7209 q^{-11} +3498 q^{-12} +14845 q^{-13} +14724 q^{-14} +6619 q^{-15} -6482 q^{-16} -12944 q^{-17} -11647 q^{-18} -5804 q^{-19} +5821 q^{-20} +11713 q^{-21} +11350 q^{-22} +2872 q^{-23} -4696 q^{-24} -9434 q^{-25} -10155 q^{-26} -2946 q^{-27} +4098 q^{-28} +9167 q^{-29} +7129 q^{-30} +3105 q^{-31} -2746 q^{-32} -7734 q^{-33} -6493 q^{-34} -2737 q^{-35} +2923 q^{-36} +4996 q^{-37} +5710 q^{-38} +2795 q^{-39} -2027 q^{-40} -4233 q^{-41} -4522 q^{-42} -1751 q^{-43} +410 q^{-44} +3331 q^{-45} +3671 q^{-46} +1653 q^{-47} -388 q^{-48} -2254 q^{-49} -2234 q^{-50} -1967 q^{-51} +205 q^{-52} +1545 q^{-53} +1705 q^{-54} +1224 q^{-55} +85 q^{-56} -615 q^{-57} -1500 q^{-58} -825 q^{-59} -141 q^{-60} +428 q^{-61} +743 q^{-62} +616 q^{-63} +362 q^{-64} -403 q^{-65} -411 q^{-66} -382 q^{-67} -170 q^{-68} +64 q^{-69} +249 q^{-70} +340 q^{-71} +25 q^{-72} -16 q^{-73} -124 q^{-74} -126 q^{-75} -99 q^{-76} +6 q^{-77} +115 q^{-78} +30 q^{-79} +45 q^{-80} - q^{-81} -20 q^{-82} -48 q^{-83} -23 q^{-84} +23 q^{-85} +15 q^{-87} +7 q^{-88} +5 q^{-89} -11 q^{-90} -9 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{54}-3 q^{53}+3 q^{52}+q^{51}-6 q^{50}+8 q^{49}-9 q^{48}+10 q^{47}-2 q^{46}-22 q^{45}+36 q^{44}-19 q^{43}+15 q^{42}-20 q^{41}-51 q^{40}+111 q^{39}-21 q^{38}-8 q^{37}-91 q^{36}-82 q^{35}+286 q^{34}+19 q^{33}-92 q^{32}-277 q^{31}-149 q^{30}+581 q^{29}+185 q^{28}-178 q^{27}-595 q^{26}-343 q^{25}+880 q^{24}+481 q^{23}-120 q^{22}-888 q^{21}-673 q^{20}+978 q^{19}+743 q^{18}+122 q^{17}-958 q^{16}-977 q^{15}+825 q^{14}+792 q^{13}+416 q^{12}-776 q^{11}-1114 q^{10}+543 q^9+643 q^8+630 q^7-478 q^6-1085 q^5+249 q^4+407 q^3+749 q^2-163 q-955-23 q^{-1} +149 q^{-2} +778 q^{-3} +137 q^{-4} -728 q^{-5} -233 q^{-6} -134 q^{-7} +672 q^{-8} +375 q^{-9} -396 q^{-10} -294 q^{-11} -378 q^{-12} +404 q^{-13} +442 q^{-14} -49 q^{-15} -163 q^{-16} -454 q^{-17} +88 q^{-18} +300 q^{-19} +141 q^{-20} +39 q^{-21} -321 q^{-22} -88 q^{-23} +84 q^{-24} +123 q^{-25} +134 q^{-26} -125 q^{-27} -83 q^{-28} -30 q^{-29} +31 q^{-30} +97 q^{-31} -17 q^{-32} -23 q^{-33} -32 q^{-34} -11 q^{-35} +35 q^{-36} +3 q^{-37} +2 q^{-38} -9 q^{-39} -9 q^{-40} +7 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math> | |
|||
coloured_jones_5 = <math>-q^{80}+3 q^{79}-3 q^{78}-q^{77}+6 q^{76}-5 q^{75}-3 q^{74}+8 q^{73}-4 q^{72}-q^{71}+8 q^{70}-12 q^{69}-11 q^{68}+21 q^{67}+14 q^{66}-5 q^{65}-22 q^{64}-34 q^{63}+7 q^{62}+75 q^{61}+66 q^{60}-59 q^{59}-162 q^{58}-103 q^{57}+133 q^{56}+334 q^{55}+192 q^{54}-276 q^{53}-619 q^{52}-366 q^{51}+470 q^{50}+1080 q^{49}+647 q^{48}-674 q^{47}-1678 q^{46}-1161 q^{45}+821 q^{44}+2461 q^{43}+1860 q^{42}-832 q^{41}-3231 q^{40}-2808 q^{39}+583 q^{38}+3964 q^{37}+3871 q^{36}-94 q^{35}-4443 q^{34}-4915 q^{33}-655 q^{32}+4597 q^{31}+5812 q^{30}+1530 q^{29}-4432 q^{28}-6383 q^{27}-2373 q^{26}+3910 q^{25}+6625 q^{24}+3128 q^{23}-3295 q^{22}-6482 q^{21}-3611 q^{20}+2501 q^{19}+6137 q^{18}+3925 q^{17}-1853 q^{16}-5565 q^{15}-3996 q^{14}+1130 q^{13}+5005 q^{12}+4030 q^{11}-634 q^{10}-4339 q^9-3928 q^8-17 q^7+3764 q^6+3906 q^5+473 q^4-3070 q^3-3745 q^2-1143 q+2397+3633 q^{-1} +1616 q^{-2} -1573 q^{-3} -3292 q^{-4} -2185 q^{-5} +740 q^{-6} +2871 q^{-7} +2475 q^{-8} +147 q^{-9} -2186 q^{-10} -2648 q^{-11} -918 q^{-12} +1415 q^{-13} +2448 q^{-14} +1536 q^{-15} -529 q^{-16} -2055 q^{-17} -1844 q^{-18} -246 q^{-19} +1386 q^{-20} +1846 q^{-21} +874 q^{-22} -681 q^{-23} -1559 q^{-24} -1177 q^{-25} +13 q^{-26} +1052 q^{-27} +1218 q^{-28} +471 q^{-29} -529 q^{-30} -995 q^{-31} -681 q^{-32} +44 q^{-33} +644 q^{-34} +702 q^{-35} +239 q^{-36} -302 q^{-37} -520 q^{-38} -362 q^{-39} +21 q^{-40} +326 q^{-41} +328 q^{-42} +110 q^{-43} -121 q^{-44} -234 q^{-45} -155 q^{-46} +16 q^{-47} +120 q^{-48} +120 q^{-49} +50 q^{-50} -50 q^{-51} -81 q^{-52} -39 q^{-53} +2 q^{-54} +32 q^{-55} +40 q^{-56} +8 q^{-57} -19 q^{-58} -13 q^{-59} -8 q^{-60} -2 q^{-61} +11 q^{-62} +7 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{111}-3 q^{110}+3 q^{109}+q^{108}-6 q^{107}+5 q^{106}+4 q^{104}-14 q^{103}+7 q^{102}+15 q^{101}-26 q^{100}+18 q^{99}+5 q^{98}-5 q^{97}-37 q^{96}+22 q^{95}+59 q^{94}-62 q^{93}+23 q^{92}-6 q^{91}-42 q^{90}-55 q^{89}+123 q^{88}+192 q^{87}-164 q^{86}-100 q^{85}-170 q^{84}-129 q^{83}+115 q^{82}+596 q^{81}+612 q^{80}-468 q^{79}-798 q^{78}-963 q^{77}-422 q^{76}+901 q^{75}+2241 q^{74}+1962 q^{73}-996 q^{72}-2896 q^{71}-3549 q^{70}-1659 q^{69}+2553 q^{68}+6269 q^{67}+5743 q^{66}-877 q^{65}-6779 q^{64}-9469 q^{63}-5700 q^{62}+3925 q^{61}+12961 q^{60}+13693 q^{59}+2283 q^{58}-10692 q^{57}-18675 q^{56}-14467 q^{55}+1913 q^{54}+19644 q^{53}+25210 q^{52}+10645 q^{51}-10654 q^{50}-27467 q^{49}-26739 q^{48}-5805 q^{47}+21506 q^{46}+35577 q^{45}+22409 q^{44}-4323 q^{43}-30514 q^{42}-37060 q^{41}-16824 q^{40}+16488 q^{39}+39319 q^{38}+31754 q^{37}+5350 q^{36}-26325 q^{35}-40357 q^{34}-25325 q^{33}+8043 q^{32}+35758 q^{31}+34436 q^{30}+12861 q^{29}-18752 q^{28}-36938 q^{27}-28088 q^{26}+1142 q^{25}+29006 q^{24}+31710 q^{23}+16027 q^{22}-12149 q^{21}-31018 q^{20}-27007 q^{19}-2896 q^{18}+22750 q^{17}+27575 q^{16}+16999 q^{15}-7174 q^{14}-25518 q^{13}-25488 q^{12}-6194 q^{11}+17092 q^{10}+24019 q^9+18392 q^8-1873 q^7-19974 q^6-24460 q^5-10547 q^4+10191 q^3+19883 q^2+20150 q+4894-12517 q^{-1} -22066 q^{-2} -15065 q^{-3} +1389 q^{-4} +13095 q^{-5} +19786 q^{-6} +11592 q^{-7} -2785 q^{-8} -16031 q^{-9} -16720 q^{-10} -7209 q^{-11} +3498 q^{-12} +14845 q^{-13} +14724 q^{-14} +6619 q^{-15} -6482 q^{-16} -12944 q^{-17} -11647 q^{-18} -5804 q^{-19} +5821 q^{-20} +11713 q^{-21} +11350 q^{-22} +2872 q^{-23} -4696 q^{-24} -9434 q^{-25} -10155 q^{-26} -2946 q^{-27} +4098 q^{-28} +9167 q^{-29} +7129 q^{-30} +3105 q^{-31} -2746 q^{-32} -7734 q^{-33} -6493 q^{-34} -2737 q^{-35} +2923 q^{-36} +4996 q^{-37} +5710 q^{-38} +2795 q^{-39} -2027 q^{-40} -4233 q^{-41} -4522 q^{-42} -1751 q^{-43} +410 q^{-44} +3331 q^{-45} +3671 q^{-46} +1653 q^{-47} -388 q^{-48} -2254 q^{-49} -2234 q^{-50} -1967 q^{-51} +205 q^{-52} +1545 q^{-53} +1705 q^{-54} +1224 q^{-55} +85 q^{-56} -615 q^{-57} -1500 q^{-58} -825 q^{-59} -141 q^{-60} +428 q^{-61} +743 q^{-62} +616 q^{-63} +362 q^{-64} -403 q^{-65} -411 q^{-66} -382 q^{-67} -170 q^{-68} +64 q^{-69} +249 q^{-70} +340 q^{-71} +25 q^{-72} -16 q^{-73} -124 q^{-74} -126 q^{-75} -99 q^{-76} +6 q^{-77} +115 q^{-78} +30 q^{-79} +45 q^{-80} - q^{-81} -20 q^{-82} -48 q^{-83} -23 q^{-84} +23 q^{-85} +15 q^{-87} +7 q^{-88} +5 q^{-89} -11 q^{-90} -9 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 52]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[20, 15, 1, 16], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 52]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[20, 15, 1, 16], |
|||
X[16, 9, 17, 10], X[10, 19, 11, 20], X[18, 11, 19, 12], |
X[16, 9, 17, 10], X[10, 19, 11, 20], X[18, 11, 19, 12], |
||
X[12, 17, 13, 18], X[2, 8, 3, 7], X[4, 14, 5, 13]]</nowiki></ |
X[12, 17, 13, 18], X[2, 8, 3, 7], X[4, 14, 5, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 52]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 52]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 7, -8, 10, -3, 4, -5, 8, |
|||
-7, 6, -4]</nowiki></ |
-7, 6, -4]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 52]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 52]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 52]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 14, 2, 16, 18, 4, 20, 12, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 52]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, -2, -2, -3, 2, -3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 52]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_52_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 52]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 52]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 52]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 52]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_52_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 52]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 52]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 7 13 2 3 |
|||
-15 + -- - -- + -- + 13 t - 7 t + 2 t |
-15 + -- - -- + -- + 13 t - 7 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 52]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 52]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 3 z + 5 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 52]], KnotSignature[Knot[10, 52]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{59, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 7 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 23], Knot[10, 52]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 52]], KnotSignature[Knot[10, 52]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{59, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 52]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 4 7 2 3 4 5 6 |
|||
-8 - q + -- - -- + - + 10 q - 9 q + 8 q - 6 q + 3 q - q |
-8 - q + -- - -- + - + 10 q - 9 q + 8 q - 6 q + 3 q - q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 52]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 52]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 52]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -8 -6 2 2 6 8 10 12 14 |
|||
3 - q - q - q + -- + 2 q + 2 q - 2 q + q - q - q + |
3 - q - q - q + -- + 2 q + 2 q - 2 q + q - q - q + |
||
4 |
4 |
||
Line 146: | Line 180: | ||
16 18 |
16 18 |
||
q - q</nowiki></ |
q - q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 52]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 52]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 |
|||
-4 2 2 2 z 2 z 2 2 4 z 3 z |
-4 2 2 2 z 2 z 2 2 4 z 3 z |
||
4 - a - 2 a + 6 z - ---- + ---- - 3 a z + 4 z - -- + ---- - |
4 - a - 2 a + 6 z - ---- + ---- - 3 a z + 4 z - -- + ---- - |
||
Line 159: | Line 197: | ||
a z + z + -- |
a z + z + -- |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 52]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 52]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-4 2 2 z 7 z 3 2 6 z 4 z |
-4 2 2 z 7 z 3 2 6 z 4 z |
||
4 - a + 2 a + --- - --- - 9 a z - 4 a z - 9 z + ---- + ---- - |
4 - a + 2 a + --- - --- - 9 a z - 4 a z - 9 z + ---- + ---- - |
||
Line 190: | Line 232: | ||
a z + 6 z + ---- + 2 a z + -- + a z |
a z + 6 z + ---- + 2 a z + -- + a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 52]], Vassiliev[3][Knot[10, 52]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 52]], Vassiliev[3][Knot[10, 52]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 52]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 52]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 3 1 4 3 |
|||
6 q + 5 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
6 q + 5 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
||
9 5 7 4 5 4 5 3 3 3 3 2 2 |
9 5 7 4 5 4 5 3 3 3 3 2 2 |
||
Line 206: | Line 256: | ||
9 4 11 4 13 5 |
9 4 11 4 13 5 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 52], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 52], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -13 2 -11 7 6 9 21 6 28 37 3 52 |
|||
20 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + |
20 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + |
||
12 10 9 8 7 6 5 4 3 2 |
12 10 9 8 7 6 5 4 3 2 |
||
Line 219: | Line 273: | ||
9 10 11 12 13 14 15 16 17 |
9 10 11 12 13 14 15 16 17 |
||
31 q - 37 q + 9 q + 14 q - 15 q + 4 q + 3 q - 3 q + q</nowiki></ |
31 q - 37 q + 9 q + 14 q - 15 q + 4 q + 3 q - 3 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 22:25, 27 May 2009
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 52's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X8493 X14,6,15,5 X20,15,1,16 X16,9,17,10 X10,19,11,20 X18,11,19,12 X12,17,13,18 X2837 X4,14,5,13 |
Gauss code | 1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 7, -8, 10, -3, 4, -5, 8, -7, 6, -4 |
Dowker-Thistlethwaite code | 6 8 14 2 16 18 4 20 12 10 |
Conway Notation | [311,3,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{7, 13}, {2, 12}, {13, 11}, {12, 8}, {1, 6}, {5, 7}, {6, 9}, {8, 4}, {3, 5}, {4, 10}, {9, 3}, {11, 2}, {10, 1}] |
[edit Notes on presentations of 10 52]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 52"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X8493 X14,6,15,5 X20,15,1,16 X16,9,17,10 X10,19,11,20 X18,11,19,12 X12,17,13,18 X2837 X4,14,5,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 7, -8, 10, -3, 4, -5, 8, -7, 6, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 14 2 16 18 4 20 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[311,3,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 13}, {2, 12}, {13, 11}, {12, 8}, {1, 6}, {5, 7}, {6, 9}, {8, 4}, {3, 5}, {4, 10}, {9, 3}, {11, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 52"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 59, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_23,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 52"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_23,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 52. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|