10 51
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 51's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X9,17,10,16 X5,15,6,14 X15,7,16,6 X13,1,14,20 X19,11,20,10 X11,19,12,18 X17,13,18,12 X7283 |
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -3, 7, -8, 9, -6, 4, -5, 3, -9, 8, -7, 6 |
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 20 6 12 10 |
| Conway Notation | [32,21,2] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {12, 3}, {11, 13}, {1, 12}, {13, 2}, {10, 1}] |
[edit Notes on presentations of 10 51]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 51"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X9,17,10,16 X5,15,6,14 X15,7,16,6 X13,1,14,20 X19,11,20,10 X11,19,12,18 X17,13,18,12 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -10, 2, -3, 7, -8, 9, -6, 4, -5, 3, -9, 8, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 16 18 20 6 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[32,21,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 4}, {3, 7}, {6, 8}, {7, 9}, {8, 11}, {5, 10}, {4, 6}, {2, 5}, {12, 3}, {11, 13}, {1, 12}, {13, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-7 t^2+15 t-19+15 t^{-1} -7 t^{-2} +2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+5 z^4+5 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 67, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^7-5 q^6+8 q^5-10 q^4+12 q^3-10 q^2+9 q-6+3 q^{-1} - q^{-2} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +z^6 a^{-4} +3 z^4 a^{-2} +4 z^4 a^{-4} -z^4 a^{-6} -z^4+3 z^2 a^{-2} +7 z^2 a^{-4} -3 z^2 a^{-6} -2 z^2+ a^{-2} +4 a^{-4} -3 a^{-6} -1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +6 z^8 a^{-4} +3 z^8 a^{-6} +4 z^7 a^{-1} +6 z^7 a^{-3} +5 z^7 a^{-5} +3 z^7 a^{-7} -z^6 a^{-2} -12 z^6 a^{-4} -6 z^6 a^{-6} +2 z^6 a^{-8} +3 z^6+a z^5-6 z^5 a^{-1} -16 z^5 a^{-3} -16 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} -6 z^4 a^{-2} +13 z^4 a^{-4} +9 z^4 a^{-6} -4 z^4 a^{-8} -6 z^4-2 a z^3+15 z^3 a^{-3} +21 z^3 a^{-5} +5 z^3 a^{-7} -3 z^3 a^{-9} +4 z^2 a^{-2} -8 z^2 a^{-4} -8 z^2 a^{-6} +z^2 a^{-8} +3 z^2+a z-5 z a^{-3} -9 z a^{-5} -3 z a^{-7} +2 z a^{-9} - a^{-2} +4 a^{-4} +3 a^{-6} -1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+q^4-q^2-1+2 q^{-2} -2 q^{-4} +3 q^{-6} + q^{-8} +2 q^{-10} +3 q^{-12} - q^{-14} +2 q^{-16} -2 q^{-18} -2 q^{-20} - q^{-24} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-2 q^{30}+5 q^{28}-8 q^{26}+8 q^{24}-6 q^{22}-3 q^{20}+16 q^{18}-31 q^{16}+42 q^{14}-44 q^{12}+24 q^{10}+7 q^8-48 q^6+87 q^4-101 q^2+88-42 q^{-2} -28 q^{-4} +91 q^{-6} -127 q^{-8} +120 q^{-10} -70 q^{-12} -2 q^{-14} +67 q^{-16} -98 q^{-18} +82 q^{-20} -25 q^{-22} -44 q^{-24} +92 q^{-26} -95 q^{-28} +44 q^{-30} +39 q^{-32} -116 q^{-34} +163 q^{-36} -147 q^{-38} +84 q^{-40} +20 q^{-42} -116 q^{-44} +180 q^{-46} -180 q^{-48} +130 q^{-50} -33 q^{-52} -57 q^{-54} +120 q^{-56} -126 q^{-58} +89 q^{-60} -17 q^{-62} -50 q^{-64} +83 q^{-66} -73 q^{-68} +18 q^{-70} +51 q^{-72} -103 q^{-74} +113 q^{-76} -78 q^{-78} +6 q^{-80} +62 q^{-82} -114 q^{-84} +123 q^{-86} -94 q^{-88} +37 q^{-90} +16 q^{-92} -60 q^{-94} +74 q^{-96} -66 q^{-98} +43 q^{-100} -15 q^{-102} -7 q^{-104} +19 q^{-106} -24 q^{-108} +20 q^{-110} -14 q^{-112} +8 q^{-114} - q^{-116} -3 q^{-118} +4 q^{-120} -4 q^{-122} +3 q^{-124} - q^{-126} + q^{-128} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^3-3 q+3 q^{-1} - q^{-3} +2 q^{-5} +2 q^{-7} -2 q^{-9} +3 q^{-11} -3 q^{-13} + q^{-15} - q^{-17} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-2 q^{14}-q^{12}+7 q^{10}-6 q^8-8 q^6+17 q^4-4 q^2-19+20 q^{-2} +5 q^{-4} -22 q^{-6} +12 q^{-8} +12 q^{-10} -12 q^{-12} -2 q^{-14} +11 q^{-16} +5 q^{-18} -17 q^{-20} +5 q^{-22} +19 q^{-24} -21 q^{-26} -5 q^{-28} +21 q^{-30} -13 q^{-32} -9 q^{-34} +13 q^{-36} -3 q^{-38} -5 q^{-40} +4 q^{-42} - q^{-46} + q^{-48} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{33}+2 q^{31}+q^{29}-3 q^{27}-4 q^{25}+6 q^{23}+11 q^{21}-11 q^{19}-21 q^{17}+11 q^{15}+37 q^{13}-4 q^{11}-59 q^9-10 q^7+77 q^5+35 q^3-85 q-72 q^{-1} +85 q^{-3} +101 q^{-5} -66 q^{-7} -124 q^{-9} +42 q^{-11} +130 q^{-13} -6 q^{-15} -122 q^{-17} -17 q^{-19} +99 q^{-21} +45 q^{-23} -69 q^{-25} -64 q^{-27} +34 q^{-29} +82 q^{-31} +5 q^{-33} -95 q^{-35} -36 q^{-37} +95 q^{-39} +75 q^{-41} -95 q^{-43} -102 q^{-45} +72 q^{-47} +118 q^{-49} -48 q^{-51} -121 q^{-53} +13 q^{-55} +111 q^{-57} +10 q^{-59} -84 q^{-61} -29 q^{-63} +57 q^{-65} +34 q^{-67} -31 q^{-69} -26 q^{-71} +12 q^{-73} +18 q^{-75} -4 q^{-77} -8 q^{-79} + q^{-81} +4 q^{-83} - q^{-85} - q^{-87} + q^{-91} - q^{-93} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-2 q^{54}-q^{52}+3 q^{50}+4 q^{46}-9 q^{44}-6 q^{42}+12 q^{40}+6 q^{38}+16 q^{36}-32 q^{34}-34 q^{32}+24 q^{30}+38 q^{28}+69 q^{26}-62 q^{24}-122 q^{22}-23 q^{20}+85 q^{18}+233 q^{16}-5 q^{14}-255 q^{12}-233 q^{10}+14 q^8+468 q^6+275 q^4-234 q^2-548-326 q^{-2} +524 q^{-4} +672 q^{-6} +92 q^{-8} -666 q^{-10} -758 q^{-12} +238 q^{-14} +831 q^{-16} +522 q^{-18} -431 q^{-20} -920 q^{-22} -168 q^{-24} +621 q^{-26} +707 q^{-28} -54 q^{-30} -718 q^{-32} -418 q^{-34} +245 q^{-36} +613 q^{-38} +240 q^{-40} -361 q^{-42} -505 q^{-44} -105 q^{-46} +421 q^{-48} +458 q^{-50} +7 q^{-52} -554 q^{-54} -431 q^{-56} +210 q^{-58} +644 q^{-60} +385 q^{-62} -521 q^{-64} -729 q^{-66} -100 q^{-68} +692 q^{-70} +752 q^{-72} -277 q^{-74} -832 q^{-76} -471 q^{-78} +445 q^{-80} +895 q^{-82} +126 q^{-84} -580 q^{-86} -660 q^{-88} +12 q^{-90} +666 q^{-92} +376 q^{-94} -143 q^{-96} -496 q^{-98} -258 q^{-100} +255 q^{-102} +301 q^{-104} +122 q^{-106} -185 q^{-108} -219 q^{-110} +7 q^{-112} +98 q^{-114} +117 q^{-116} -12 q^{-118} -79 q^{-120} -26 q^{-122} +40 q^{-126} +10 q^{-128} -14 q^{-130} -3 q^{-132} -8 q^{-134} +7 q^{-136} +2 q^{-138} -3 q^{-140} +2 q^{-142} -2 q^{-144} + q^{-146} - q^{-150} + q^{-152} } |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+q^4-q^2-1+2 q^{-2} -2 q^{-4} +3 q^{-6} + q^{-8} +2 q^{-10} +3 q^{-12} - q^{-14} +2 q^{-16} -2 q^{-18} -2 q^{-20} - q^{-24} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-4 q^{18}+12 q^{16}-28 q^{14}+56 q^{12}-98 q^{10}+160 q^8-240 q^6+325 q^4-414 q^2+488-532 q^{-2} +511 q^{-4} -436 q^{-6} +294 q^{-8} -86 q^{-10} -161 q^{-12} +436 q^{-14} -670 q^{-16} +884 q^{-18} -1004 q^{-20} +1056 q^{-22} -1000 q^{-24} +866 q^{-26} -664 q^{-28} +408 q^{-30} -160 q^{-32} -88 q^{-34} +284 q^{-36} -428 q^{-38} +496 q^{-40} -502 q^{-42} +467 q^{-44} -398 q^{-46} +310 q^{-48} -230 q^{-50} +161 q^{-52} -108 q^{-54} +66 q^{-56} -40 q^{-58} +25 q^{-60} -12 q^{-62} +6 q^{-64} -2 q^{-66} + q^{-68} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-q^{16}-2 q^{14}+3 q^{12}+3 q^{10}-4 q^8-5 q^6+5 q^4+6 q^2-10-6 q^{-2} +10 q^{-4} +2 q^{-6} -10 q^{-8} +8 q^{-12} -2 q^{-14} -2 q^{-16} +8 q^{-18} +7 q^{-20} -3 q^{-22} +9 q^{-24} +9 q^{-26} -7 q^{-28} -3 q^{-30} +9 q^{-32} -12 q^{-36} -4 q^{-38} +5 q^{-40} -4 q^{-42} -11 q^{-44} - q^{-46} +4 q^{-48} - q^{-52} + q^{-54} +2 q^{-56} + q^{-58} + q^{-62} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}-2 q^{12}+q^{10}+4 q^8-8 q^6+2 q^4+8 q^2-16+4 q^{-2} +13 q^{-4} -19 q^{-6} +2 q^{-8} +14 q^{-10} -10 q^{-12} +13 q^{-16} +6 q^{-18} +2 q^{-20} +2 q^{-22} +14 q^{-24} -5 q^{-26} -16 q^{-28} +12 q^{-30} -6 q^{-32} -20 q^{-34} +13 q^{-36} -12 q^{-40} +8 q^{-42} + q^{-44} -4 q^{-46} +3 q^{-48} + q^{-50} - q^{-52} + q^{-54} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+q^5-2 q^3+q-2 q^{-1} +2 q^{-3} -2 q^{-5} +2 q^{-7} + q^{-9} +2 q^{-11} +3 q^{-13} +2 q^{-15} +4 q^{-17} - q^{-19} +2 q^{-21} -3 q^{-23} - q^{-25} -3 q^{-27} - q^{-31} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-q^{14}+3 q^{10}-q^8-4 q^6+3 q^4+2 q^2-8-5 q^{-2} +8 q^{-4} +2 q^{-6} -15 q^{-8} +12 q^{-12} -9 q^{-14} -14 q^{-16} +12 q^{-18} +9 q^{-20} -4 q^{-22} +12 q^{-24} +26 q^{-26} +10 q^{-28} +3 q^{-30} +19 q^{-32} +7 q^{-34} -19 q^{-36} -7 q^{-38} +2 q^{-40} -19 q^{-42} -21 q^{-44} + q^{-46} +2 q^{-48} -10 q^{-50} -4 q^{-52} +8 q^{-54} +4 q^{-56} -3 q^{-58} +3 q^{-60} +4 q^{-62} + q^{-68} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+q^6-2 q^4-2 q^{-2} +2 q^{-4} -2 q^{-6} +2 q^{-8} +2 q^{-12} +2 q^{-14} +3 q^{-16} +3 q^{-18} +3 q^{-20} +4 q^{-22} - q^{-24} +2 q^{-26} -3 q^{-28} -2 q^{-30} -2 q^{-32} -3 q^{-34} - q^{-38} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+2 q^{12}-5 q^{10}+8 q^8-12 q^6+16 q^4-20 q^2+20-20 q^{-2} +17 q^{-4} -9 q^{-6} +2 q^{-8} +10 q^{-10} -18 q^{-12} +30 q^{-14} -35 q^{-16} +40 q^{-18} -38 q^{-20} +36 q^{-22} -28 q^{-24} +19 q^{-26} -8 q^{-28} -2 q^{-30} +10 q^{-32} -16 q^{-34} +19 q^{-36} -20 q^{-38} +18 q^{-40} -16 q^{-42} +11 q^{-44} -8 q^{-46} +5 q^{-48} -3 q^{-50} + q^{-52} - q^{-54} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{24}-2 q^{20}-2 q^{18}+3 q^{16}+6 q^{14}-q^{12}-10 q^{10}-6 q^8+10 q^6+14 q^4-6 q^2-20-6 q^{-2} +19 q^{-4} +16 q^{-6} -13 q^{-8} -21 q^{-10} + q^{-12} +20 q^{-14} +6 q^{-16} -14 q^{-18} -9 q^{-20} +13 q^{-22} +13 q^{-24} -5 q^{-26} -10 q^{-28} +8 q^{-30} +16 q^{-32} + q^{-34} -13 q^{-36} +16 q^{-40} +6 q^{-42} -17 q^{-44} -14 q^{-46} +11 q^{-48} +17 q^{-50} -7 q^{-52} -24 q^{-54} -8 q^{-56} +17 q^{-58} +14 q^{-60} -9 q^{-62} -17 q^{-64} -2 q^{-66} +12 q^{-68} +6 q^{-70} -4 q^{-72} -6 q^{-74} +4 q^{-78} +2 q^{-80} - q^{-82} - q^{-84} + q^{-88} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-2 q^{16}+3 q^{14}-4 q^{12}+7 q^{10}-10 q^8+10 q^6-14 q^4+15 q^2-18+14 q^{-2} -15 q^{-4} +14 q^{-6} -10 q^{-8} +2 q^{-10} + q^{-12} -4 q^{-14} +13 q^{-16} -19 q^{-18} +24 q^{-20} -21 q^{-22} +37 q^{-24} -24 q^{-26} +35 q^{-28} -22 q^{-30} +32 q^{-32} -17 q^{-34} +13 q^{-36} -15 q^{-38} - q^{-40} - q^{-42} -12 q^{-44} +4 q^{-46} -17 q^{-48} +15 q^{-50} -15 q^{-52} +14 q^{-54} -15 q^{-56} +13 q^{-58} -9 q^{-60} +7 q^{-62} -6 q^{-64} +5 q^{-66} -2 q^{-68} +2 q^{-70} - q^{-72} + q^{-74} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-2 q^{30}+5 q^{28}-8 q^{26}+8 q^{24}-6 q^{22}-3 q^{20}+16 q^{18}-31 q^{16}+42 q^{14}-44 q^{12}+24 q^{10}+7 q^8-48 q^6+87 q^4-101 q^2+88-42 q^{-2} -28 q^{-4} +91 q^{-6} -127 q^{-8} +120 q^{-10} -70 q^{-12} -2 q^{-14} +67 q^{-16} -98 q^{-18} +82 q^{-20} -25 q^{-22} -44 q^{-24} +92 q^{-26} -95 q^{-28} +44 q^{-30} +39 q^{-32} -116 q^{-34} +163 q^{-36} -147 q^{-38} +84 q^{-40} +20 q^{-42} -116 q^{-44} +180 q^{-46} -180 q^{-48} +130 q^{-50} -33 q^{-52} -57 q^{-54} +120 q^{-56} -126 q^{-58} +89 q^{-60} -17 q^{-62} -50 q^{-64} +83 q^{-66} -73 q^{-68} +18 q^{-70} +51 q^{-72} -103 q^{-74} +113 q^{-76} -78 q^{-78} +6 q^{-80} +62 q^{-82} -114 q^{-84} +123 q^{-86} -94 q^{-88} +37 q^{-90} +16 q^{-92} -60 q^{-94} +74 q^{-96} -66 q^{-98} +43 q^{-100} -15 q^{-102} -7 q^{-104} +19 q^{-106} -24 q^{-108} +20 q^{-110} -14 q^{-112} +8 q^{-114} - q^{-116} -3 q^{-118} +4 q^{-120} -4 q^{-122} +3 q^{-124} - q^{-126} + q^{-128} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 51"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-7 t^2+15 t-19+15 t^{-1} -7 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+5 z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 67, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^7-5 q^6+8 q^5-10 q^4+12 q^3-10 q^2+9 q-6+3 q^{-1} - q^{-2} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +z^6 a^{-4} +3 z^4 a^{-2} +4 z^4 a^{-4} -z^4 a^{-6} -z^4+3 z^2 a^{-2} +7 z^2 a^{-4} -3 z^2 a^{-6} -2 z^2+ a^{-2} +4 a^{-4} -3 a^{-6} -1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +6 z^8 a^{-4} +3 z^8 a^{-6} +4 z^7 a^{-1} +6 z^7 a^{-3} +5 z^7 a^{-5} +3 z^7 a^{-7} -z^6 a^{-2} -12 z^6 a^{-4} -6 z^6 a^{-6} +2 z^6 a^{-8} +3 z^6+a z^5-6 z^5 a^{-1} -16 z^5 a^{-3} -16 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} -6 z^4 a^{-2} +13 z^4 a^{-4} +9 z^4 a^{-6} -4 z^4 a^{-8} -6 z^4-2 a z^3+15 z^3 a^{-3} +21 z^3 a^{-5} +5 z^3 a^{-7} -3 z^3 a^{-9} +4 z^2 a^{-2} -8 z^2 a^{-4} -8 z^2 a^{-6} +z^2 a^{-8} +3 z^2+a z-5 z a^{-3} -9 z a^{-5} -3 z a^{-7} +2 z a^{-9} - a^{-2} +4 a^{-4} +3 a^{-6} -1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 51"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-7 t^2+15 t-19+15 t^{-1} -7 t^{-2} +2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^7-5 q^6+8 q^5-10 q^4+12 q^3-10 q^2+9 q-6+3 q^{-1} - q^{-2} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (5, 8) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 51. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-2 q^{22}+q^{21}+5 q^{20}-11 q^{19}+3 q^{18}+21 q^{17}-33 q^{16}-q^{15}+55 q^{14}-59 q^{13}-17 q^{12}+95 q^{11}-73 q^{10}-39 q^9+117 q^8-67 q^7-52 q^6+107 q^5-43 q^4-52 q^3+73 q^2-16 q-37+34 q^{-1} - q^{-2} -16 q^{-3} +9 q^{-4} + q^{-5} -3 q^{-6} + q^{-7} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}+2 q^{44}-q^{43}-q^{42}-q^{41}+7 q^{40}-4 q^{39}-10 q^{38}+3 q^{37}+29 q^{36}-10 q^{35}-48 q^{34}-2 q^{33}+94 q^{32}+13 q^{31}-134 q^{30}-57 q^{29}+188 q^{28}+114 q^{27}-232 q^{26}-191 q^{25}+261 q^{24}+280 q^{23}-278 q^{22}-365 q^{21}+268 q^{20}+450 q^{19}-258 q^{18}-496 q^{17}+209 q^{16}+550 q^{15}-181 q^{14}-544 q^{13}+111 q^{12}+545 q^{11}-67 q^{10}-490 q^9-5 q^8+440 q^7+49 q^6-354 q^5-93 q^4+274 q^3+107 q^2-187 q-109+117 q^{-1} +94 q^{-2} -67 q^{-3} -67 q^{-4} +30 q^{-5} +45 q^{-6} -12 q^{-7} -26 q^{-8} +4 q^{-9} +13 q^{-10} -2 q^{-11} -4 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-2 q^{73}+q^{72}+q^{71}-3 q^{70}+5 q^{69}-7 q^{68}+6 q^{67}+6 q^{66}-18 q^{65}+10 q^{64}-18 q^{63}+30 q^{62}+36 q^{61}-58 q^{60}-16 q^{59}-71 q^{58}+97 q^{57}+165 q^{56}-77 q^{55}-107 q^{54}-297 q^{53}+131 q^{52}+472 q^{51}+102 q^{50}-153 q^{49}-810 q^{48}-107 q^{47}+825 q^{46}+621 q^{45}+137 q^{44}-1464 q^{43}-779 q^{42}+905 q^{41}+1327 q^{40}+906 q^{39}-1914 q^{38}-1695 q^{37}+544 q^{36}+1882 q^{35}+1935 q^{34}-1974 q^{33}-2487 q^{32}-85 q^{31}+2090 q^{30}+2841 q^{29}-1715 q^{28}-2921 q^{27}-726 q^{26}+1967 q^{25}+3402 q^{24}-1264 q^{23}-2958 q^{22}-1252 q^{21}+1567 q^{20}+3546 q^{19}-663 q^{18}-2585 q^{17}-1620 q^{16}+904 q^{15}+3246 q^{14}+q^{13}-1824 q^{12}-1706 q^{11}+115 q^{10}+2494 q^9+490 q^8-871 q^7-1397 q^6-478 q^5+1498 q^4+582 q^3-113 q^2-817 q-626+648 q^{-1} +360 q^{-2} +201 q^{-3} -308 q^{-4} -433 q^{-5} +194 q^{-6} +113 q^{-7} +179 q^{-8} -58 q^{-9} -195 q^{-10} +46 q^{-11} +5 q^{-12} +80 q^{-13} +2 q^{-14} -64 q^{-15} +15 q^{-16} -9 q^{-17} +22 q^{-18} +4 q^{-19} -16 q^{-20} +5 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{110}+2 q^{109}-q^{108}-q^{107}+3 q^{106}-q^{105}-5 q^{104}+5 q^{103}-q^{102}-4 q^{101}+12 q^{100}+4 q^{99}-20 q^{98}-3 q^{97}-6 q^{96}-q^{95}+46 q^{94}+41 q^{93}-34 q^{92}-70 q^{91}-85 q^{90}-26 q^{89}+155 q^{88}+229 q^{87}+73 q^{86}-189 q^{85}-425 q^{84}-338 q^{83}+207 q^{82}+727 q^{81}+704 q^{80}+35 q^{79}-992 q^{78}-1426 q^{77}-510 q^{76}+1138 q^{75}+2191 q^{74}+1521 q^{73}-863 q^{72}-3137 q^{71}-2911 q^{70}+94 q^{69}+3721 q^{68}+4722 q^{67}+1447 q^{66}-3942 q^{65}-6642 q^{64}-3589 q^{63}+3408 q^{62}+8403 q^{61}+6285 q^{60}-2136 q^{59}-9753 q^{58}-9193 q^{57}+196 q^{56}+10485 q^{55}+11995 q^{54}+2272 q^{53}-10599 q^{52}-14488 q^{51}-4862 q^{50}+10089 q^{49}+16448 q^{48}+7479 q^{47}-9233 q^{46}-17880 q^{45}-9708 q^{44}+8016 q^{43}+18729 q^{42}+11780 q^{41}-6840 q^{40}-19175 q^{39}-13224 q^{38}+5408 q^{37}+19124 q^{36}+14640 q^{35}-4122 q^{34}-18820 q^{33}-15406 q^{32}+2515 q^{31}+17958 q^{30}+16248 q^{29}-967 q^{28}-16783 q^{27}-16419 q^{26}-911 q^{25}+14948 q^{24}+16472 q^{23}+2703 q^{22}-12725 q^{21}-15723 q^{20}-4535 q^{19}+9954 q^{18}+14594 q^{17}+5928 q^{16}-7036 q^{15}-12643 q^{14}-6908 q^{13}+4095 q^{12}+10368 q^{11}+7118 q^{10}-1574 q^9-7706 q^8-6686 q^7-406 q^6+5202 q^5+5671 q^4+1575 q^3-2983 q^2-4327 q-2072+1315 q^{-1} +2979 q^{-2} +1991 q^{-3} -270 q^{-4} -1786 q^{-5} -1585 q^{-6} -280 q^{-7} +913 q^{-8} +1117 q^{-9} +419 q^{-10} -373 q^{-11} -664 q^{-12} -384 q^{-13} +94 q^{-14} +351 q^{-15} +270 q^{-16} +16 q^{-17} -166 q^{-18} -164 q^{-19} -25 q^{-20} +63 q^{-21} +75 q^{-22} +38 q^{-23} -28 q^{-24} -47 q^{-25} -8 q^{-26} +16 q^{-27} +5 q^{-28} +11 q^{-29} +2 q^{-30} -17 q^{-31} +8 q^{-33} -2 q^{-34} +3 q^{-36} -4 q^{-37} - q^{-38} +3 q^{-39} - q^{-40} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




