10 50
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 50's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X20,14,1,13 X10,20,11,19 X18,12,19,11 X12,18,13,17 |
| Gauss code | 1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 9, -10, 7, -5, 6, -4, 10, -9, 8, -7 |
| Dowker-Thistlethwaite code | 6 8 14 2 16 18 20 4 12 10 |
| Conway Notation | [32,3,2] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{2, 12}, {1, 11}, {12, 10}, {11, 7}, {9, 4}, {10, 8}, {5, 3}, {4, 6}, {7, 5}, {6, 2}, {3, 9}, {8, 1}] |
[edit Notes on presentations of 10 50]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 50"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X20,14,1,13 X10,20,11,19 X18,12,19,11 X12,18,13,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 9, -10, 7, -5, 6, -4, 10, -9, 8, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 14 2 16 18 20 4 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[32,3,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,2,-1,2,2,-3,2,2,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 12}, {1, 11}, {12, 10}, {11, 7}, {9, 4}, {10, 8}, {5, 3}, {4, 6}, {7, 5}, {6, 2}, {3, 9}, {8, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} +2 q^{-5} +3 q^{-9} +3 q^{-13} + q^{-17} - q^{-19} -2 q^{-21} -2 q^{-23} -4 q^{-25} -2 q^{-29} +2 q^{-31} +2 q^{-35} + q^{-39} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-6} +3 q^{-8} +2 q^{-10} +2 q^{-12} +5 q^{-14} +4 q^{-16} +2 q^{-18} +3 q^{-20} +7 q^{-22} + q^{-24} -2 q^{-26} +5 q^{-28} +5 q^{-30} -11 q^{-32} -10 q^{-34} -2 q^{-36} -14 q^{-38} -20 q^{-40} -8 q^{-42} + q^{-44} -4 q^{-46} +4 q^{-48} +18 q^{-50} +13 q^{-52} +5 q^{-54} +13 q^{-56} +9 q^{-58} -7 q^{-60} -5 q^{-62} +2 q^{-64} -6 q^{-66} -10 q^{-68} - q^{-70} +4 q^{-72} -2 q^{-74} -3 q^{-76} +3 q^{-78} +2 q^{-80} - q^{-82} + q^{-86} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} +2 q^{-6} + q^{-8} + q^{-10} +3 q^{-12} +3 q^{-16} +2 q^{-20} - q^{-24} -2 q^{-26} -3 q^{-28} -3 q^{-30} -4 q^{-32} -2 q^{-36} +2 q^{-38} + q^{-40} + q^{-42} +2 q^{-44} + q^{-48} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- q^{-2} +4 q^{-4} -5 q^{-6} +8 q^{-8} -9 q^{-10} +13 q^{-12} -11 q^{-14} +12 q^{-16} -9 q^{-18} +6 q^{-20} -6 q^{-24} +12 q^{-26} -17 q^{-28} +20 q^{-30} -24 q^{-32} +22 q^{-34} -22 q^{-36} +16 q^{-38} -12 q^{-40} +5 q^{-42} -5 q^{-46} +9 q^{-48} -11 q^{-50} +12 q^{-52} -10 q^{-54} +10 q^{-56} -7 q^{-58} +5 q^{-60} -4 q^{-62} +2 q^{-64} - q^{-66} + q^{-68} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2- q^{-2} - q^{-4} +3 q^{-6} +4 q^{-8} - q^{-10} -5 q^{-12} +8 q^{-16} +8 q^{-18} -6 q^{-20} -9 q^{-22} +3 q^{-24} +14 q^{-26} +5 q^{-28} -11 q^{-30} -10 q^{-32} +6 q^{-34} +11 q^{-36} - q^{-38} -12 q^{-40} -5 q^{-42} +5 q^{-44} +2 q^{-46} -8 q^{-48} -8 q^{-50} +4 q^{-52} +5 q^{-54} -4 q^{-56} -8 q^{-58} +4 q^{-60} +11 q^{-62} +3 q^{-64} -8 q^{-66} -2 q^{-68} +11 q^{-70} +9 q^{-72} -6 q^{-74} -11 q^{-76} + q^{-78} +12 q^{-80} +4 q^{-82} -9 q^{-84} -9 q^{-86} + q^{-88} +8 q^{-90} +2 q^{-92} -4 q^{-94} -4 q^{-96} +3 q^{-100} + q^{-102} - q^{-104} - q^{-106} + q^{-110} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +3 q^{-6} -2 q^{-8} +7 q^{-10} -4 q^{-12} +9 q^{-14} -6 q^{-16} +13 q^{-18} -8 q^{-20} +10 q^{-22} -7 q^{-24} +9 q^{-26} -3 q^{-28} +2 q^{-30} +2 q^{-32} -6 q^{-34} +5 q^{-36} -17 q^{-38} +8 q^{-40} -22 q^{-42} +11 q^{-44} -24 q^{-46} +15 q^{-48} -15 q^{-50} +18 q^{-52} -7 q^{-54} +13 q^{-56} +7 q^{-60} +5 q^{-62} -4 q^{-64} +4 q^{-66} -9 q^{-68} +9 q^{-70} -10 q^{-72} +6 q^{-74} -9 q^{-76} +8 q^{-78} -5 q^{-80} +4 q^{-82} -4 q^{-84} +3 q^{-86} -2 q^{-88} + q^{-90} - q^{-92} + q^{-94} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +4 q^{-6} -5 q^{-8} +6 q^{-10} -3 q^{-12} -2 q^{-14} +12 q^{-16} -18 q^{-18} +25 q^{-20} -23 q^{-22} +11 q^{-24} +9 q^{-26} -30 q^{-28} +49 q^{-30} -48 q^{-32} +36 q^{-34} -7 q^{-36} -25 q^{-38} +51 q^{-40} -55 q^{-42} +41 q^{-44} -8 q^{-46} -22 q^{-48} +41 q^{-50} -37 q^{-52} +15 q^{-54} +17 q^{-56} -40 q^{-58} +46 q^{-60} -32 q^{-62} - q^{-64} +35 q^{-66} -64 q^{-68} +68 q^{-70} -53 q^{-72} +15 q^{-74} +23 q^{-76} -62 q^{-78} +71 q^{-80} -64 q^{-82} +32 q^{-84} +4 q^{-86} -40 q^{-88} +51 q^{-90} -43 q^{-92} +16 q^{-94} +15 q^{-96} -34 q^{-98} +34 q^{-100} -14 q^{-102} -12 q^{-104} +38 q^{-106} -43 q^{-108} +38 q^{-110} -13 q^{-112} -13 q^{-114} +35 q^{-116} -42 q^{-118} +41 q^{-120} -24 q^{-122} +6 q^{-124} +10 q^{-126} -21 q^{-128} +23 q^{-130} -22 q^{-132} +16 q^{-134} -7 q^{-136} - q^{-138} +6 q^{-140} -10 q^{-142} +9 q^{-144} -7 q^{-146} +5 q^{-148} -2 q^{-150} - q^{-152} +2 q^{-154} -3 q^{-156} +2 q^{-158} - q^{-160} + q^{-162} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 50"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 53, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 50"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+7 t^2-11 t+13-11 t^{-1} +7 t^{-2} -2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-2 q^9+4 q^8-7 q^7+8 q^6-9 q^5+8 q^4-6 q^3+5 q^2-2 q+1} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-1, -5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 50. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-2 q^{27}+q^{26}+3 q^{25}-8 q^{24}+5 q^{23}+9 q^{22}-22 q^{21}+11 q^{20}+24 q^{19}-43 q^{18}+14 q^{17}+41 q^{16}-57 q^{15}+9 q^{14}+51 q^{13}-54 q^{12}-2 q^{11}+50 q^{10}-39 q^9-12 q^8+39 q^7-19 q^6-14 q^5+22 q^4-5 q^3-8 q^2+7 q-2 q^{-1} + q^{-2} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-2 q^{53}+q^{52}+q^{50}-3 q^{49}+3 q^{48}-3 q^{46}-3 q^{45}+12 q^{44}+2 q^{43}-20 q^{42}-10 q^{41}+37 q^{40}+24 q^{39}-56 q^{38}-44 q^{37}+67 q^{36}+82 q^{35}-87 q^{34}-109 q^{33}+84 q^{32}+147 q^{31}-85 q^{30}-167 q^{29}+67 q^{28}+188 q^{27}-53 q^{26}-188 q^{25}+26 q^{24}+186 q^{23}-q^{22}-174 q^{21}-25 q^{20}+153 q^{19}+55 q^{18}-134 q^{17}-68 q^{16}+96 q^{15}+90 q^{14}-74 q^{13}-84 q^{12}+34 q^{11}+85 q^{10}-17 q^9-61 q^8-9 q^7+51 q^6+9 q^5-26 q^4-15 q^3+17 q^2+9 q-6-7 q^{-1} +4 q^{-2} +2 q^{-3} -2 q^{-5} + q^{-6} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-2 q^{87}+q^{86}-2 q^{84}+6 q^{83}-6 q^{82}+3 q^{81}-2 q^{80}-8 q^{79}+21 q^{78}-11 q^{77}+3 q^{76}-11 q^{75}-24 q^{74}+54 q^{73}-2 q^{72}+10 q^{71}-46 q^{70}-82 q^{69}+95 q^{68}+52 q^{67}+81 q^{66}-90 q^{65}-243 q^{64}+65 q^{63}+137 q^{62}+295 q^{61}-46 q^{60}-487 q^{59}-117 q^{58}+138 q^{57}+610 q^{56}+167 q^{55}-674 q^{54}-396 q^{53}-13 q^{52}+857 q^{51}+460 q^{50}-697 q^{49}-600 q^{48}-246 q^{47}+925 q^{46}+679 q^{45}-591 q^{44}-645 q^{43}-442 q^{42}+840 q^{41}+759 q^{40}-425 q^{39}-562 q^{38}-574 q^{37}+655 q^{36}+743 q^{35}-219 q^{34}-402 q^{33}-659 q^{32}+393 q^{31}+646 q^{30}+14 q^{29}-172 q^{28}-671 q^{27}+94 q^{26}+448 q^{25}+189 q^{24}+92 q^{23}-543 q^{22}-133 q^{21}+174 q^{20}+204 q^{19}+279 q^{18}-298 q^{17}-184 q^{16}-44 q^{15}+80 q^{14}+286 q^{13}-77 q^{12}-93 q^{11}-106 q^{10}-35 q^9+169 q^8+10 q^7-3 q^6-60 q^5-56 q^4+62 q^3+9 q^2+19 q-16-29 q^{-1} +18 q^{-2} - q^{-3} +9 q^{-4} -2 q^{-5} -9 q^{-6} +5 q^{-7} - q^{-8} +2 q^{-9} -2 q^{-11} + q^{-12} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




