10 54: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 54 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,7,-3,4,-10,2,-4,3,-5,9,-8,6,-7,5,-9,8/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=54|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,7,-3,4,-10,2,-4,3,-5,9,-8,6,-7,5,-9,8/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = [[10_12]], |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[10_12]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
Line 72: Line 40:
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{17}-2 q^{16}+q^{15}+3 q^{14}-7 q^{13}+5 q^{12}+4 q^{11}-15 q^{10}+14 q^9+4 q^8-26 q^7+23 q^6+9 q^5-35 q^4+23 q^3+18 q^2-38 q+16+24 q^{-1} -33 q^{-2} +5 q^{-3} +24 q^{-4} -22 q^{-5} -3 q^{-6} +17 q^{-7} -9 q^{-8} -5 q^{-9} +7 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math> |

coloured_jones_3 = <math>-q^{33}+2 q^{32}-q^{31}-2 q^{29}+4 q^{28}-q^{27}-q^{26}-2 q^{25}+2 q^{24}+q^{23}+5 q^{22}-5 q^{21}-11 q^{20}+2 q^{19}+27 q^{18}-q^{17}-44 q^{16}-5 q^{15}+56 q^{14}+20 q^{13}-70 q^{12}-30 q^{11}+66 q^{10}+49 q^9-65 q^8-50 q^7+42 q^6+65 q^5-34 q^4-55 q^3+5 q^2+64 q+3-48 q^{-1} -28 q^{-2} +50 q^{-3} +35 q^{-4} -34 q^{-5} -50 q^{-6} +23 q^{-7} +53 q^{-8} -6 q^{-9} -54 q^{-10} -9 q^{-11} +47 q^{-12} +19 q^{-13} -32 q^{-14} -28 q^{-15} +21 q^{-16} +24 q^{-17} -6 q^{-18} -20 q^{-19} +11 q^{-21} +4 q^{-22} -6 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math> |
{{Display Coloured Jones|J2=<math>q^{17}-2 q^{16}+q^{15}+3 q^{14}-7 q^{13}+5 q^{12}+4 q^{11}-15 q^{10}+14 q^9+4 q^8-26 q^7+23 q^6+9 q^5-35 q^4+23 q^3+18 q^2-38 q+16+24 q^{-1} -33 q^{-2} +5 q^{-3} +24 q^{-4} -22 q^{-5} -3 q^{-6} +17 q^{-7} -9 q^{-8} -5 q^{-9} +7 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math>|J3=<math>-q^{33}+2 q^{32}-q^{31}-2 q^{29}+4 q^{28}-q^{27}-q^{26}-2 q^{25}+2 q^{24}+q^{23}+5 q^{22}-5 q^{21}-11 q^{20}+2 q^{19}+27 q^{18}-q^{17}-44 q^{16}-5 q^{15}+56 q^{14}+20 q^{13}-70 q^{12}-30 q^{11}+66 q^{10}+49 q^9-65 q^8-50 q^7+42 q^6+65 q^5-34 q^4-55 q^3+5 q^2+64 q+3-48 q^{-1} -28 q^{-2} +50 q^{-3} +35 q^{-4} -34 q^{-5} -50 q^{-6} +23 q^{-7} +53 q^{-8} -6 q^{-9} -54 q^{-10} -9 q^{-11} +47 q^{-12} +19 q^{-13} -32 q^{-14} -28 q^{-15} +21 q^{-16} +24 q^{-17} -6 q^{-18} -20 q^{-19} +11 q^{-21} +4 q^{-22} -6 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math>|J4=<math>q^{54}-2 q^{53}+q^{52}-q^{50}+5 q^{49}-8 q^{48}+4 q^{47}-2 q^{45}+13 q^{44}-22 q^{43}+7 q^{42}+3 q^{41}+5 q^{40}+28 q^{39}-55 q^{38}-6 q^{37}+13 q^{36}+46 q^{35}+64 q^{34}-125 q^{33}-68 q^{32}+19 q^{31}+145 q^{30}+161 q^{29}-213 q^{28}-210 q^{27}-32 q^{26}+275 q^{25}+344 q^{24}-245 q^{23}-376 q^{22}-167 q^{21}+326 q^{20}+537 q^{19}-171 q^{18}-444 q^{17}-315 q^{16}+252 q^{15}+623 q^{14}-63 q^{13}-377 q^{12}-373 q^{11}+120 q^{10}+583 q^9+6 q^8-251 q^7-347 q^6+q^5+487 q^4+41 q^3-122 q^2-295 q-102+371 q^{-1} +72 q^{-2} +9 q^{-3} -225 q^{-4} -190 q^{-5} +225 q^{-6} +70 q^{-7} +133 q^{-8} -108 q^{-9} -222 q^{-10} +67 q^{-11} +2 q^{-12} +188 q^{-13} +31 q^{-14} -153 q^{-15} -28 q^{-16} -104 q^{-17} +131 q^{-18} +110 q^{-19} -29 q^{-20} -15 q^{-21} -150 q^{-22} +20 q^{-23} +77 q^{-24} +43 q^{-25} +48 q^{-26} -100 q^{-27} -37 q^{-28} +5 q^{-29} +28 q^{-30} +64 q^{-31} -27 q^{-32} -22 q^{-33} -21 q^{-34} -4 q^{-35} +32 q^{-36} + q^{-37} -9 q^{-39} -8 q^{-40} +7 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math>|J5=<math>-q^{80}+2 q^{79}-q^{78}+q^{76}-2 q^{75}-q^{74}+5 q^{73}-3 q^{72}-2 q^{71}+5 q^{70}-4 q^{69}-q^{68}+9 q^{67}-9 q^{66}-9 q^{65}+9 q^{64}+7 q^{63}+8 q^{62}+7 q^{61}-29 q^{60}-40 q^{59}+13 q^{58}+57 q^{57}+66 q^{56}-119 q^{54}-145 q^{53}+7 q^{52}+211 q^{51}+264 q^{50}+23 q^{49}-356 q^{48}-465 q^{47}-70 q^{46}+520 q^{45}+746 q^{44}+213 q^{43}-709 q^{42}-1116 q^{41}-432 q^{40}+849 q^{39}+1524 q^{38}+771 q^{37}-892 q^{36}-1937 q^{35}-1193 q^{34}+824 q^{33}+2261 q^{32}+1624 q^{31}-611 q^{30}-2432 q^{29}-2051 q^{28}+332 q^{27}+2471 q^{26}+2307 q^{25}-2 q^{24}-2325 q^{23}-2486 q^{22}-273 q^{21}+2133 q^{20}+2456 q^{19}+501 q^{18}-1854 q^{17}-2402 q^{16}-622 q^{15}+1619 q^{14}+2217 q^{13}+737 q^{12}-1368 q^{11}-2108 q^{10}-776 q^9+1163 q^8+1909 q^7+888 q^6-914 q^5-1818 q^4-948 q^3+683 q^2+1598 q+1082-373 q^{-1} -1442 q^{-2} -1141 q^{-3} +88 q^{-4} +1136 q^{-5} +1187 q^{-6} +246 q^{-7} -851 q^{-8} -1125 q^{-9} -488 q^{-10} +459 q^{-11} +981 q^{-12} +687 q^{-13} -119 q^{-14} -731 q^{-15} -733 q^{-16} -213 q^{-17} +425 q^{-18} +679 q^{-19} +411 q^{-20} -111 q^{-21} -487 q^{-22} -496 q^{-23} -158 q^{-24} +256 q^{-25} +440 q^{-26} +300 q^{-27} -4 q^{-28} -281 q^{-29} -346 q^{-30} -168 q^{-31} +105 q^{-32} +257 q^{-33} +241 q^{-34} +74 q^{-35} -136 q^{-36} -227 q^{-37} -149 q^{-38} + q^{-39} +133 q^{-40} +172 q^{-41} +84 q^{-42} -46 q^{-43} -118 q^{-44} -111 q^{-45} -29 q^{-46} +59 q^{-47} +88 q^{-48} +57 q^{-49} -2 q^{-50} -54 q^{-51} -55 q^{-52} -15 q^{-53} +14 q^{-54} +32 q^{-55} +28 q^{-56} -19 q^{-58} -12 q^{-59} -6 q^{-60} +11 q^{-62} +6 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math>|J6=<math>q^{111}-2 q^{110}+q^{109}-q^{107}+2 q^{106}-2 q^{105}+4 q^{104}-6 q^{103}+5 q^{102}-q^{101}-8 q^{100}+9 q^{99}-3 q^{98}+8 q^{97}-11 q^{96}+14 q^{95}-6 q^{94}-28 q^{93}+20 q^{92}+3 q^{91}+18 q^{90}-11 q^{89}+30 q^{88}-30 q^{87}-78 q^{86}+31 q^{85}+30 q^{84}+66 q^{83}+19 q^{82}+45 q^{81}-125 q^{80}-226 q^{79}+23 q^{78}+144 q^{77}+278 q^{76}+181 q^{75}+28 q^{74}-473 q^{73}-699 q^{72}-111 q^{71}+491 q^{70}+996 q^{69}+803 q^{68}+48 q^{67}-1376 q^{66}-2011 q^{65}-785 q^{64}+1052 q^{63}+2660 q^{62}+2554 q^{61}+617 q^{60}-2788 q^{59}-4658 q^{58}-2817 q^{57}+1109 q^{56}+5048 q^{55}+5911 q^{54}+2738 q^{53}-3642 q^{52}-8100 q^{51}-6606 q^{50}-584 q^{49}+6652 q^{48}+9938 q^{47}+6682 q^{46}-2449 q^{45}-10386 q^{44}-10831 q^{43}-4152 q^{42}+5889 q^{41}+12395 q^{40}+10773 q^{39}+661 q^{38}-10008 q^{37}-13141 q^{36}-7669 q^{35}+3223 q^{34}+12044 q^{33}+12757 q^{32}+3635 q^{31}-7772 q^{30}-12726 q^{29}-9196 q^{28}+719 q^{27}+10012 q^{26}+12321 q^{25}+4956 q^{24}-5607 q^{23}-10963 q^{22}-8916 q^{21}-566 q^{20}+8026 q^{19}+10991 q^{18}+5165 q^{17}-4175 q^{16}-9334 q^{15}-8315 q^{14}-1347 q^{13}+6443 q^{12}+9918 q^{11}+5532 q^{10}-2727 q^9-7915 q^8-8143 q^7-2609 q^6+4544 q^5+8900 q^4+6380 q^3-563 q^2-5955 q-7898-4355 q^{-1} +1812 q^{-2} +7113 q^{-3} +6961 q^{-4} +2077 q^{-5} -3006 q^{-6} -6632 q^{-7} -5650 q^{-8} -1381 q^{-9} +4114 q^{-10} +6224 q^{-11} +4103 q^{-12} +454 q^{-13} -3892 q^{-14} -5340 q^{-15} -3804 q^{-16} +495 q^{-17} +3739 q^{-18} +4257 q^{-19} +3031 q^{-20} -422 q^{-21} -3054 q^{-22} -4123 q^{-23} -2151 q^{-24} +464 q^{-25} +2278 q^{-26} +3337 q^{-27} +1982 q^{-28} - q^{-29} -2245 q^{-30} -2439 q^{-31} -1640 q^{-32} -350 q^{-33} +1529 q^{-34} +2018 q^{-35} +1730 q^{-36} +91 q^{-37} -807 q^{-38} -1461 q^{-39} -1546 q^{-40} -442 q^{-41} +453 q^{-42} +1317 q^{-43} +933 q^{-44} +690 q^{-45} -80 q^{-46} -886 q^{-47} -890 q^{-48} -667 q^{-49} +99 q^{-50} +269 q^{-51} +759 q^{-52} +633 q^{-53} +131 q^{-54} -209 q^{-55} -512 q^{-56} -340 q^{-57} -403 q^{-58} +102 q^{-59} +328 q^{-60} +330 q^{-61} +242 q^{-62} +18 q^{-63} -52 q^{-64} -350 q^{-65} -178 q^{-66} -65 q^{-67} +57 q^{-68} +133 q^{-69} +142 q^{-70} +152 q^{-71} -76 q^{-72} -65 q^{-73} -95 q^{-74} -61 q^{-75} -27 q^{-76} +32 q^{-77} +98 q^{-78} +13 q^{-79} +20 q^{-80} -15 q^{-81} -23 q^{-82} -37 q^{-83} -14 q^{-84} +24 q^{-85} +2 q^{-86} +14 q^{-87} +5 q^{-88} +3 q^{-89} -11 q^{-90} -8 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math>|J7=Not Available}}
coloured_jones_4 = <math>q^{54}-2 q^{53}+q^{52}-q^{50}+5 q^{49}-8 q^{48}+4 q^{47}-2 q^{45}+13 q^{44}-22 q^{43}+7 q^{42}+3 q^{41}+5 q^{40}+28 q^{39}-55 q^{38}-6 q^{37}+13 q^{36}+46 q^{35}+64 q^{34}-125 q^{33}-68 q^{32}+19 q^{31}+145 q^{30}+161 q^{29}-213 q^{28}-210 q^{27}-32 q^{26}+275 q^{25}+344 q^{24}-245 q^{23}-376 q^{22}-167 q^{21}+326 q^{20}+537 q^{19}-171 q^{18}-444 q^{17}-315 q^{16}+252 q^{15}+623 q^{14}-63 q^{13}-377 q^{12}-373 q^{11}+120 q^{10}+583 q^9+6 q^8-251 q^7-347 q^6+q^5+487 q^4+41 q^3-122 q^2-295 q-102+371 q^{-1} +72 q^{-2} +9 q^{-3} -225 q^{-4} -190 q^{-5} +225 q^{-6} +70 q^{-7} +133 q^{-8} -108 q^{-9} -222 q^{-10} +67 q^{-11} +2 q^{-12} +188 q^{-13} +31 q^{-14} -153 q^{-15} -28 q^{-16} -104 q^{-17} +131 q^{-18} +110 q^{-19} -29 q^{-20} -15 q^{-21} -150 q^{-22} +20 q^{-23} +77 q^{-24} +43 q^{-25} +48 q^{-26} -100 q^{-27} -37 q^{-28} +5 q^{-29} +28 q^{-30} +64 q^{-31} -27 q^{-32} -22 q^{-33} -21 q^{-34} -4 q^{-35} +32 q^{-36} + q^{-37} -9 q^{-39} -8 q^{-40} +7 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math> |

coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{78}+q^{76}-2 q^{75}-q^{74}+5 q^{73}-3 q^{72}-2 q^{71}+5 q^{70}-4 q^{69}-q^{68}+9 q^{67}-9 q^{66}-9 q^{65}+9 q^{64}+7 q^{63}+8 q^{62}+7 q^{61}-29 q^{60}-40 q^{59}+13 q^{58}+57 q^{57}+66 q^{56}-119 q^{54}-145 q^{53}+7 q^{52}+211 q^{51}+264 q^{50}+23 q^{49}-356 q^{48}-465 q^{47}-70 q^{46}+520 q^{45}+746 q^{44}+213 q^{43}-709 q^{42}-1116 q^{41}-432 q^{40}+849 q^{39}+1524 q^{38}+771 q^{37}-892 q^{36}-1937 q^{35}-1193 q^{34}+824 q^{33}+2261 q^{32}+1624 q^{31}-611 q^{30}-2432 q^{29}-2051 q^{28}+332 q^{27}+2471 q^{26}+2307 q^{25}-2 q^{24}-2325 q^{23}-2486 q^{22}-273 q^{21}+2133 q^{20}+2456 q^{19}+501 q^{18}-1854 q^{17}-2402 q^{16}-622 q^{15}+1619 q^{14}+2217 q^{13}+737 q^{12}-1368 q^{11}-2108 q^{10}-776 q^9+1163 q^8+1909 q^7+888 q^6-914 q^5-1818 q^4-948 q^3+683 q^2+1598 q+1082-373 q^{-1} -1442 q^{-2} -1141 q^{-3} +88 q^{-4} +1136 q^{-5} +1187 q^{-6} +246 q^{-7} -851 q^{-8} -1125 q^{-9} -488 q^{-10} +459 q^{-11} +981 q^{-12} +687 q^{-13} -119 q^{-14} -731 q^{-15} -733 q^{-16} -213 q^{-17} +425 q^{-18} +679 q^{-19} +411 q^{-20} -111 q^{-21} -487 q^{-22} -496 q^{-23} -158 q^{-24} +256 q^{-25} +440 q^{-26} +300 q^{-27} -4 q^{-28} -281 q^{-29} -346 q^{-30} -168 q^{-31} +105 q^{-32} +257 q^{-33} +241 q^{-34} +74 q^{-35} -136 q^{-36} -227 q^{-37} -149 q^{-38} + q^{-39} +133 q^{-40} +172 q^{-41} +84 q^{-42} -46 q^{-43} -118 q^{-44} -111 q^{-45} -29 q^{-46} +59 q^{-47} +88 q^{-48} +57 q^{-49} -2 q^{-50} -54 q^{-51} -55 q^{-52} -15 q^{-53} +14 q^{-54} +32 q^{-55} +28 q^{-56} -19 q^{-58} -12 q^{-59} -6 q^{-60} +11 q^{-62} +6 q^{-63} -3 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{109}-q^{107}+2 q^{106}-2 q^{105}+4 q^{104}-6 q^{103}+5 q^{102}-q^{101}-8 q^{100}+9 q^{99}-3 q^{98}+8 q^{97}-11 q^{96}+14 q^{95}-6 q^{94}-28 q^{93}+20 q^{92}+3 q^{91}+18 q^{90}-11 q^{89}+30 q^{88}-30 q^{87}-78 q^{86}+31 q^{85}+30 q^{84}+66 q^{83}+19 q^{82}+45 q^{81}-125 q^{80}-226 q^{79}+23 q^{78}+144 q^{77}+278 q^{76}+181 q^{75}+28 q^{74}-473 q^{73}-699 q^{72}-111 q^{71}+491 q^{70}+996 q^{69}+803 q^{68}+48 q^{67}-1376 q^{66}-2011 q^{65}-785 q^{64}+1052 q^{63}+2660 q^{62}+2554 q^{61}+617 q^{60}-2788 q^{59}-4658 q^{58}-2817 q^{57}+1109 q^{56}+5048 q^{55}+5911 q^{54}+2738 q^{53}-3642 q^{52}-8100 q^{51}-6606 q^{50}-584 q^{49}+6652 q^{48}+9938 q^{47}+6682 q^{46}-2449 q^{45}-10386 q^{44}-10831 q^{43}-4152 q^{42}+5889 q^{41}+12395 q^{40}+10773 q^{39}+661 q^{38}-10008 q^{37}-13141 q^{36}-7669 q^{35}+3223 q^{34}+12044 q^{33}+12757 q^{32}+3635 q^{31}-7772 q^{30}-12726 q^{29}-9196 q^{28}+719 q^{27}+10012 q^{26}+12321 q^{25}+4956 q^{24}-5607 q^{23}-10963 q^{22}-8916 q^{21}-566 q^{20}+8026 q^{19}+10991 q^{18}+5165 q^{17}-4175 q^{16}-9334 q^{15}-8315 q^{14}-1347 q^{13}+6443 q^{12}+9918 q^{11}+5532 q^{10}-2727 q^9-7915 q^8-8143 q^7-2609 q^6+4544 q^5+8900 q^4+6380 q^3-563 q^2-5955 q-7898-4355 q^{-1} +1812 q^{-2} +7113 q^{-3} +6961 q^{-4} +2077 q^{-5} -3006 q^{-6} -6632 q^{-7} -5650 q^{-8} -1381 q^{-9} +4114 q^{-10} +6224 q^{-11} +4103 q^{-12} +454 q^{-13} -3892 q^{-14} -5340 q^{-15} -3804 q^{-16} +495 q^{-17} +3739 q^{-18} +4257 q^{-19} +3031 q^{-20} -422 q^{-21} -3054 q^{-22} -4123 q^{-23} -2151 q^{-24} +464 q^{-25} +2278 q^{-26} +3337 q^{-27} +1982 q^{-28} - q^{-29} -2245 q^{-30} -2439 q^{-31} -1640 q^{-32} -350 q^{-33} +1529 q^{-34} +2018 q^{-35} +1730 q^{-36} +91 q^{-37} -807 q^{-38} -1461 q^{-39} -1546 q^{-40} -442 q^{-41} +453 q^{-42} +1317 q^{-43} +933 q^{-44} +690 q^{-45} -80 q^{-46} -886 q^{-47} -890 q^{-48} -667 q^{-49} +99 q^{-50} +269 q^{-51} +759 q^{-52} +633 q^{-53} +131 q^{-54} -209 q^{-55} -512 q^{-56} -340 q^{-57} -403 q^{-58} +102 q^{-59} +328 q^{-60} +330 q^{-61} +242 q^{-62} +18 q^{-63} -52 q^{-64} -350 q^{-65} -178 q^{-66} -65 q^{-67} +57 q^{-68} +133 q^{-69} +142 q^{-70} +152 q^{-71} -76 q^{-72} -65 q^{-73} -95 q^{-74} -61 q^{-75} -27 q^{-76} +32 q^{-77} +98 q^{-78} +13 q^{-79} +20 q^{-80} -15 q^{-81} -23 q^{-82} -37 q^{-83} -14 q^{-84} +24 q^{-85} +2 q^{-86} +14 q^{-87} +5 q^{-88} +3 q^{-89} -11 q^{-90} -8 q^{-91} +5 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 54]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[7, 12, 8, 13], X[11, 8, 12, 9],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 54]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[7, 12, 8, 13], X[11, 8, 12, 9],
X[13, 19, 14, 18], X[5, 17, 6, 16], X[17, 7, 18, 6],
X[13, 19, 14, 18], X[5, 17, 6, 16], X[17, 7, 18, 6],
X[15, 1, 16, 20], X[19, 15, 20, 14], X[9, 2, 10, 3]]</nowiki></pre></td></tr>
X[15, 1, 16, 20], X[19, 15, 20, 14], X[9, 2, 10, 3]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 54]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 54]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7,
5, -9, 8]</nowiki></pre></td></tr>
5, -9, 8]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 54]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 16, 12, 2, 8, 18, 20, 6, 14]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 54]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 54]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, -2, -3, 2, -3, -3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 16, 12, 2, 8, 18, 20, 6, 14]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 54]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 54]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, -2, -3, 2, -3, -3}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 54]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_54_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 54]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 54]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 10 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 54]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 54]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_54_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 54]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 54]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 10 2 3
-11 + -- - -- + -- + 10 t - 6 t + 2 t
-11 + -- - -- + -- + 10 t - 6 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 54]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 4 z + 6 z + 2 z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 54]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 12], Knot[10, 54]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 4 z + 6 z + 2 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 54]], KnotSignature[Knot[10, 54]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{47, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 54]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 6 2 3 4 5 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 12], Knot[10, 54]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 54]], KnotSignature[Knot[10, 54]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{47, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 54]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 4 6 2 3 4 5 6
-6 - q + -- - -- + - + 8 q - 7 q + 6 q - 4 q + 2 q - q
-6 - q + -- - -- + - + 8 q - 7 q + 6 q - 4 q + 2 q - q
3 2 q
3 2 q
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 54]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 54]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -8 -6 -4 2 4 6 8 10 12 14
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 54]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 54]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -8 -6 -4 2 4 6 8 10 12 14
3 - q - q - q + q + 2 q + q + 2 q - q + q - q - q -
3 - q - q - q + q + 2 q + q + 2 q - q + q - q - q -
18
18
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 54]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 54]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4
2 2 2 2 3 z 5 z 2 2 4 z 4 z
2 2 2 2 3 z 5 z 2 2 4 z 4 z
3 - -- + -- - 2 a + 5 z - ---- + ---- - 3 a z + 4 z - -- + ---- -
3 - -- + -- - 2 a + 5 z - ---- + ---- - 3 a z + 4 z - -- + ---- -
Line 157: Line 195:
a z + z + --
a z + z + --
2
2
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 54]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 54]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
2 2 2 z z z 5 z 3 2 z
2 2 2 z z z 5 z 3 2 z
3 - -- - -- + 2 a - -- + -- + -- - --- - 8 a z - 4 a z - 7 z - -- +
3 - -- - -- + 2 a - -- + -- + -- - --- - 8 a z - 4 a z - 7 z - -- +
Line 188: Line 230:
---- + a z + 5 z + ---- + 2 a z + -- + a z
---- + a z + 5 z + ---- + 2 a z + -- + a z
a 2 a
a 2 a
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 54]], Vassiliev[3][Knot[10, 54]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 54]], Vassiliev[3][Knot[10, 54]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 54]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 3 1 3 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 54]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 3 1 3 3
5 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- +
5 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- +
9 5 7 4 5 4 5 3 3 3 3 2 2
9 5 7 4 5 4 5 3 3 3 3 2 2
Line 204: Line 254:
9 4 11 4 13 5
9 4 11 4 13 5
q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 54], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 2 -11 7 5 9 17 3 22 24 5 33
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 54], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -13 2 -11 7 5 9 17 3 22 24 5 33
16 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- +
16 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- +
12 10 9 8 7 6 5 4 3 2
12 10 9 8 7 6 5 4 3 2
Line 217: Line 271:
9 10 11 12 13 14 15 16 17
9 10 11 12 13 14 15 16 17
14 q - 15 q + 4 q + 5 q - 7 q + 3 q + q - 2 q + q</nowiki></pre></td></tr>
14 q - 15 q + 4 q + 5 q - 7 q + 3 q + q - 2 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 16:58, 1 September 2005

10 53.gif

10_53

10 55.gif

10_55

10 54.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 54's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 54 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X7,12,8,13 X11,8,12,9 X13,19,14,18 X5,17,6,16 X17,7,18,6 X15,1,16,20 X19,15,20,14 X9,2,10,3
Gauss code -1, 10, -2, 1, -6, 7, -3, 4, -10, 2, -4, 3, -5, 9, -8, 6, -7, 5, -9, 8
Dowker-Thistlethwaite code 4 10 16 12 2 8 18 20 6 14
Conway Notation [23,3,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

10 54 ML.gif 10 54 AP.gif
[{12, 4}, {3, 10}, {9, 11}, {10, 12}, {11, 8}, {6, 9}, {5, 7}, {4, 6}, {2, 5}, {1, 3}, {8, 2}, {7, 1}]

[edit Notes on presentations of 10 54]


Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{2,3\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-8]
Hyperbolic Volume 10.5913
A-Polynomial See Data:10 54/A-polynomial

[edit Notes for 10 54's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 2

[edit Notes for 10 54's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-6 t^2+10 t-11+10 t^{-1} -6 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+6 z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 47, 2 }
Jones polynomial [math]\displaystyle{ -q^6+2 q^5-4 q^4+6 q^3-7 q^2+8 q-6+6 q^{-1} -4 q^{-2} +2 q^{-3} - q^{-4} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-2} +z^6-a^2 z^4+4 z^4 a^{-2} -z^4 a^{-4} +4 z^4-3 a^2 z^2+5 z^2 a^{-2} -3 z^2 a^{-4} +5 z^2-2 a^2+2 a^{-2} -2 a^{-4} +3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a z^9+z^9 a^{-1} +2 a^2 z^8+3 z^8 a^{-2} +5 z^8+a^3 z^7+3 z^7 a^{-1} +4 z^7 a^{-3} -9 a^2 z^6-5 z^6 a^{-2} +4 z^6 a^{-4} -18 z^6-5 a^3 z^5-13 a z^5-18 z^5 a^{-1} -7 z^5 a^{-3} +3 z^5 a^{-5} +12 a^2 z^4-3 z^4 a^{-2} -6 z^4 a^{-4} +2 z^4 a^{-6} +17 z^4+8 a^3 z^3+20 a z^3+17 z^3 a^{-1} +2 z^3 a^{-3} -2 z^3 a^{-5} +z^3 a^{-7} -6 a^2 z^2+5 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} -7 z^2-4 a^3 z-8 a z-5 z a^{-1} +z a^{-3} +z a^{-5} -z a^{-7} +2 a^2-2 a^{-2} -2 a^{-4} +3 }[/math]
The A2 invariant [math]\displaystyle{ -q^{12}-q^8-q^6+q^4+3+2 q^{-2} + q^{-4} +2 q^{-6} - q^{-8} + q^{-10} - q^{-12} - q^{-14} - q^{-18} }[/math]
The G2 invariant [math]\displaystyle{ q^{60}-q^{58}+4 q^{56}-6 q^{54}+6 q^{52}-5 q^{50}-3 q^{48}+13 q^{46}-22 q^{44}+24 q^{42}-19 q^{40}+2 q^{38}+16 q^{36}-34 q^{34}+38 q^{32}-29 q^{30}+7 q^{28}+12 q^{26}-30 q^{24}+29 q^{22}-18 q^{20}+q^{18}+15 q^{16}-22 q^{14}+17 q^{12}-q^{10}-15 q^8+28 q^6-28 q^4+24 q^2-2-14 q^{-2} +35 q^{-4} -40 q^{-6} +40 q^{-8} -18 q^{-10} -5 q^{-12} +27 q^{-14} -36 q^{-16} +34 q^{-18} -16 q^{-20} - q^{-22} +18 q^{-24} -22 q^{-26} +14 q^{-28} -15 q^{-32} +21 q^{-34} -16 q^{-36} +3 q^{-38} +11 q^{-40} -19 q^{-42} +21 q^{-44} -15 q^{-46} +7 q^{-48} + q^{-50} -11 q^{-52} +13 q^{-54} -14 q^{-56} +12 q^{-58} -8 q^{-60} +3 q^{-62} + q^{-64} -8 q^{-66} +9 q^{-68} -12 q^{-70} +9 q^{-72} -5 q^{-74} + q^{-76} +2 q^{-78} -6 q^{-80} +6 q^{-82} -5 q^{-84} +4 q^{-86} -2 q^{-88} + q^{-92} -2 q^{-94} +2 q^{-96} - q^{-98} + q^{-100} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_12,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (4, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{488}{3} }[/math] [math]\displaystyle{ \frac{40}{3} }[/math] [math]\displaystyle{ 256 }[/math] [math]\displaystyle{ \frac{1120}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{7808}{3} }[/math] [math]\displaystyle{ \frac{640}{3} }[/math] [math]\displaystyle{ \frac{43862}{15} }[/math] [math]\displaystyle{ \frac{4952}{15} }[/math] [math]\displaystyle{ \frac{31688}{45} }[/math] [math]\displaystyle{ \frac{394}{9} }[/math] [math]\displaystyle{ \frac{182}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 10 54. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
13          1-1
11         1 1
9        31 -2
7       31  2
5      43   -1
3     43    1
1    35     2
-1   33      0
-3  13       2
-5 13        -2
-7 1         1
-91          -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials