10 123: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 123 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-4,3,-10,9,-1,7,-2,5,-3,8,-9,6,-7,4,-5,10,-8/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=123|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-4,3,-10,9,-1,7,-2,5,-3,8,-9,6,-7,4,-5,10,-8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[K11a28]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11a28]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
||
Line 71: | Line 39: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{15}-5 q^{14}+5 q^{13}+15 q^{12}-41 q^{11}+14 q^{10}+80 q^9-121 q^8-10 q^7+206 q^6-197 q^5-85 q^4+331 q^3-215 q^2-169 q+383-169 q^{-1} -215 q^{-2} +331 q^{-3} -85 q^{-4} -197 q^{-5} +206 q^{-6} -10 q^{-7} -121 q^{-8} +80 q^{-9} +14 q^{-10} -41 q^{-11} +15 q^{-12} +5 q^{-13} -5 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{30}+5 q^{29}-5 q^{28}-10 q^{27}+11 q^{26}+31 q^{25}-20 q^{24}-95 q^{23}+46 q^{22}+200 q^{21}-25 q^{20}-405 q^{19}-59 q^{18}+674 q^{17}+283 q^{16}-980 q^{15}-659 q^{14}+1229 q^{13}+1193 q^{12}-1376 q^{11}-1800 q^{10}+1364 q^9+2413 q^8-1205 q^7-2948 q^6+930 q^5+3353 q^4-584 q^3-3597 q^2+192 q+3691+192 q^{-1} -3597 q^{-2} -584 q^{-3} +3353 q^{-4} +930 q^{-5} -2948 q^{-6} -1205 q^{-7} +2413 q^{-8} +1364 q^{-9} -1800 q^{-10} -1376 q^{-11} +1193 q^{-12} +1229 q^{-13} -659 q^{-14} -980 q^{-15} +283 q^{-16} +674 q^{-17} -59 q^{-18} -405 q^{-19} -25 q^{-20} +200 q^{-21} +46 q^{-22} -95 q^{-23} -20 q^{-24} +31 q^{-25} +11 q^{-26} -10 q^{-27} -5 q^{-28} +5 q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{15}-5 q^{14}+5 q^{13}+15 q^{12}-41 q^{11}+14 q^{10}+80 q^9-121 q^8-10 q^7+206 q^6-197 q^5-85 q^4+331 q^3-215 q^2-169 q+383-169 q^{-1} -215 q^{-2} +331 q^{-3} -85 q^{-4} -197 q^{-5} +206 q^{-6} -10 q^{-7} -121 q^{-8} +80 q^{-9} +14 q^{-10} -41 q^{-11} +15 q^{-12} +5 q^{-13} -5 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+5 q^{29}-5 q^{28}-10 q^{27}+11 q^{26}+31 q^{25}-20 q^{24}-95 q^{23}+46 q^{22}+200 q^{21}-25 q^{20}-405 q^{19}-59 q^{18}+674 q^{17}+283 q^{16}-980 q^{15}-659 q^{14}+1229 q^{13}+1193 q^{12}-1376 q^{11}-1800 q^{10}+1364 q^9+2413 q^8-1205 q^7-2948 q^6+930 q^5+3353 q^4-584 q^3-3597 q^2+192 q+3691+192 q^{-1} -3597 q^{-2} -584 q^{-3} +3353 q^{-4} +930 q^{-5} -2948 q^{-6} -1205 q^{-7} +2413 q^{-8} +1364 q^{-9} -1800 q^{-10} -1376 q^{-11} +1193 q^{-12} +1229 q^{-13} -659 q^{-14} -980 q^{-15} +283 q^{-16} +674 q^{-17} -59 q^{-18} -405 q^{-19} -25 q^{-20} +200 q^{-21} +46 q^{-22} -95 q^{-23} -20 q^{-24} +31 q^{-25} +11 q^{-26} -10 q^{-27} -5 q^{-28} +5 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-5 q^{49}+5 q^{48}+10 q^{47}-16 q^{46}-q^{45}-25 q^{44}+50 q^{43}+75 q^{42}-111 q^{41}-76 q^{40}-144 q^{39}+300 q^{38}+521 q^{37}-300 q^{36}-645 q^{35}-1029 q^{34}+795 q^{33}+2396 q^{32}+536 q^{31}-1785 q^{30}-4555 q^{29}-371 q^{28}+5976 q^{27}+5172 q^{26}-707 q^{25}-11055 q^{24}-6857 q^{23}+7535 q^{22}+13845 q^{21}+6944 q^{20}-15956 q^{19}-18552 q^{18}+2209 q^{17}+21368 q^{16}+20543 q^{15}-14191 q^{14}-29641 q^{13}-9205 q^{12}+22728 q^{11}+33968 q^{10}-6460 q^9-35045 q^8-21175 q^7+18340 q^6+42330 q^5+2887 q^4-34554 q^3-29818 q^2+11268 q+44955+11268 q^{-1} -29818 q^{-2} -34554 q^{-3} +2887 q^{-4} +42330 q^{-5} +18340 q^{-6} -21175 q^{-7} -35045 q^{-8} -6460 q^{-9} +33968 q^{-10} +22728 q^{-11} -9205 q^{-12} -29641 q^{-13} -14191 q^{-14} +20543 q^{-15} +21368 q^{-16} +2209 q^{-17} -18552 q^{-18} -15956 q^{-19} +6944 q^{-20} +13845 q^{-21} +7535 q^{-22} -6857 q^{-23} -11055 q^{-24} -707 q^{-25} +5172 q^{-26} +5976 q^{-27} -371 q^{-28} -4555 q^{-29} -1785 q^{-30} +536 q^{-31} +2396 q^{-32} +795 q^{-33} -1029 q^{-34} -645 q^{-35} -300 q^{-36} +521 q^{-37} +300 q^{-38} -144 q^{-39} -76 q^{-40} -111 q^{-41} +75 q^{-42} +50 q^{-43} -25 q^{-44} - q^{-45} -16 q^{-46} +10 q^{-47} +5 q^{-48} -5 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+5 q^{74}-5 q^{73}-10 q^{72}+16 q^{71}+6 q^{70}-5 q^{69}-5 q^{68}-30 q^{67}-25 q^{66}+82 q^{65}+120 q^{64}-26 q^{63}-216 q^{62}-316 q^{61}-60 q^{60}+551 q^{59}+1025 q^{58}+464 q^{57}-1237 q^{56}-2571 q^{55}-1825 q^{54}+1562 q^{53}+5586 q^{52}+5808 q^{51}-618 q^{50}-9956 q^{49}-13478 q^{48}-4712 q^{47}+13601 q^{46}+26496 q^{45}+17652 q^{44}-12935 q^{43}-42692 q^{42}-41331 q^{41}+1497 q^{40}+57823 q^{39}+75942 q^{38}+25990 q^{37}-63660 q^{36}-117173 q^{35}-72692 q^{34}+51927 q^{33}+156391 q^{32}+136191 q^{31}-16419 q^{30}-183351 q^{29}-208746 q^{28}-43200 q^{27}+188890 q^{26}+279271 q^{25}+121855 q^{24}-169188 q^{23}-337053 q^{22}-209298 q^{21}+125956 q^{20}+374479 q^{19}+294696 q^{18}-65918 q^{17}-389525 q^{16}-368820 q^{15}-1823 q^{14}+384561 q^{13}+426473 q^{12}+69028 q^{11}-364895 q^{10}-466752 q^9-130155 q^8+336393 q^7+491875 q^6+182697 q^5-303191 q^4-504874 q^3-227767 q^2+267093 q+509105+267093 q^{-1} -227767 q^{-2} -504874 q^{-3} -303191 q^{-4} +182697 q^{-5} +491875 q^{-6} +336393 q^{-7} -130155 q^{-8} -466752 q^{-9} -364895 q^{-10} +69028 q^{-11} +426473 q^{-12} +384561 q^{-13} -1823 q^{-14} -368820 q^{-15} -389525 q^{-16} -65918 q^{-17} +294696 q^{-18} +374479 q^{-19} +125956 q^{-20} -209298 q^{-21} -337053 q^{-22} -169188 q^{-23} +121855 q^{-24} +279271 q^{-25} +188890 q^{-26} -43200 q^{-27} -208746 q^{-28} -183351 q^{-29} -16419 q^{-30} +136191 q^{-31} +156391 q^{-32} +51927 q^{-33} -72692 q^{-34} -117173 q^{-35} -63660 q^{-36} +25990 q^{-37} +75942 q^{-38} +57823 q^{-39} +1497 q^{-40} -41331 q^{-41} -42692 q^{-42} -12935 q^{-43} +17652 q^{-44} +26496 q^{-45} +13601 q^{-46} -4712 q^{-47} -13478 q^{-48} -9956 q^{-49} -618 q^{-50} +5808 q^{-51} +5586 q^{-52} +1562 q^{-53} -1825 q^{-54} -2571 q^{-55} -1237 q^{-56} +464 q^{-57} +1025 q^{-58} +551 q^{-59} -60 q^{-60} -316 q^{-61} -216 q^{-62} -26 q^{-63} +120 q^{-64} +82 q^{-65} -25 q^{-66} -30 q^{-67} -5 q^{-68} -5 q^{-69} +6 q^{-70} +16 q^{-71} -10 q^{-72} -5 q^{-73} +5 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-5 q^{104}+5 q^{103}+10 q^{102}-16 q^{101}-6 q^{100}+35 q^{98}-15 q^{97}-20 q^{96}+54 q^{95}-111 q^{94}-45 q^{93}+67 q^{92}+286 q^{91}+100 q^{90}-200 q^{89}-160 q^{88}-876 q^{87}-519 q^{86}+547 q^{85}+2266 q^{84}+2135 q^{83}+369 q^{82}-1755 q^{81}-6510 q^{80}-6759 q^{79}-1634 q^{78}+9549 q^{77}+16670 q^{76}+15089 q^{75}+3490 q^{74}-23671 q^{73}-42311 q^{72}-38074 q^{71}+2177 q^{70}+53656 q^{69}+89894 q^{68}+80429 q^{67}-5927 q^{66}-116971 q^{65}-188750 q^{64}-139516 q^{63}+17510 q^{62}+223702 q^{61}+350846 q^{60}+248163 q^{59}-55084 q^{58}-421057 q^{57}-579766 q^{56}-398132 q^{55}+125462 q^{54}+718160 q^{53}+933692 q^{52}+566398 q^{51}-296113 q^{50}-1120591 q^{49}-1390524 q^{48}-737424 q^{47}+576892 q^{46}+1714502 q^{45}+1904108 q^{44}+799778 q^{43}-994356 q^{42}-2457541 q^{41}-2432667 q^{40}-718282 q^{39}+1687441 q^{38}+3280016 q^{37}+2803073 q^{36}+415859 q^{35}-2605860 q^{34}-4118660 q^{33}-2944138 q^{32}+316119 q^{31}+3666270 q^{30}+4743125 q^{29}+2723860 q^{28}-1414996 q^{27}-4788145 q^{26}-5050456 q^{25}-1878123 q^{24}+2771269 q^{23}+5680763 q^{22}+4861446 q^{21}+506904 q^{20}-4269721 q^{19}-6201858 q^{18}-3876461 q^{17}+1233253 q^{16}+5545016 q^{15}+6124552 q^{14}+2246899 q^{13}-3178939 q^{12}-6406680 q^{11}-5126450 q^{10}-178345 q^9+4894067 q^8+6587383 q^7+3410011 q^6-2125705 q^5-6152435 q^4-5762576 q^3-1219025 q^2+4184939 q+6671309+4184939 q^{-1} -1219025 q^{-2} -5762576 q^{-3} -6152435 q^{-4} -2125705 q^{-5} +3410011 q^{-6} +6587383 q^{-7} +4894067 q^{-8} -178345 q^{-9} -5126450 q^{-10} -6406680 q^{-11} -3178939 q^{-12} +2246899 q^{-13} +6124552 q^{-14} +5545016 q^{-15} +1233253 q^{-16} -3876461 q^{-17} -6201858 q^{-18} -4269721 q^{-19} +506904 q^{-20} +4861446 q^{-21} +5680763 q^{-22} +2771269 q^{-23} -1878123 q^{-24} -5050456 q^{-25} -4788145 q^{-26} -1414996 q^{-27} +2723860 q^{-28} +4743125 q^{-29} +3666270 q^{-30} +316119 q^{-31} -2944138 q^{-32} -4118660 q^{-33} -2605860 q^{-34} +415859 q^{-35} +2803073 q^{-36} +3280016 q^{-37} +1687441 q^{-38} -718282 q^{-39} -2432667 q^{-40} -2457541 q^{-41} -994356 q^{-42} +799778 q^{-43} +1904108 q^{-44} +1714502 q^{-45} +576892 q^{-46} -737424 q^{-47} -1390524 q^{-48} -1120591 q^{-49} -296113 q^{-50} +566398 q^{-51} +933692 q^{-52} +718160 q^{-53} +125462 q^{-54} -398132 q^{-55} -579766 q^{-56} -421057 q^{-57} -55084 q^{-58} +248163 q^{-59} +350846 q^{-60} +223702 q^{-61} +17510 q^{-62} -139516 q^{-63} -188750 q^{-64} -116971 q^{-65} -5927 q^{-66} +80429 q^{-67} +89894 q^{-68} +53656 q^{-69} +2177 q^{-70} -38074 q^{-71} -42311 q^{-72} -23671 q^{-73} +3490 q^{-74} +15089 q^{-75} +16670 q^{-76} +9549 q^{-77} -1634 q^{-78} -6759 q^{-79} -6510 q^{-80} -1755 q^{-81} +369 q^{-82} +2135 q^{-83} +2266 q^{-84} +547 q^{-85} -519 q^{-86} -876 q^{-87} -160 q^{-88} -200 q^{-89} +100 q^{-90} +286 q^{-91} +67 q^{-92} -45 q^{-93} -111 q^{-94} +54 q^{-95} -20 q^{-96} -15 q^{-97} +35 q^{-98} -6 q^{-100} -16 q^{-101} +10 q^{-102} +5 q^{-103} -5 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+5 q^{139}-5 q^{138}-10 q^{137}+16 q^{136}+6 q^{135}-30 q^{133}-15 q^{132}+65 q^{131}-9 q^{130}-25 q^{129}+36 q^{128}-11 q^{127}-42 q^{126}-195 q^{125}-115 q^{124}+385 q^{123}+395 q^{122}+319 q^{121}+136 q^{120}-646 q^{119}-1137 q^{118}-1890 q^{117}-1295 q^{116}+1720 q^{115}+4250 q^{114}+5950 q^{113}+4577 q^{112}-1660 q^{111}-9312 q^{110}-17220 q^{109}-18195 q^{108}-4883 q^{107}+17046 q^{106}+41839 q^{105}+52772 q^{104}+33340 q^{103}-13156 q^{102}-78969 q^{101}-129393 q^{100}-120485 q^{99}-37709 q^{98}+110481 q^{97}+258889 q^{96}+312390 q^{95}+212678 q^{94}-58409 q^{93}-408671 q^{92}-655018 q^{91}-629387 q^{90}-225618 q^{89}+455543 q^{88}+1111993 q^{87}+1386952 q^{86}+974072 q^{85}-120295 q^{84}-1490425 q^{83}-2486737 q^{82}-2411772 q^{81}-992130 q^{80}+1359420 q^{79}+3658056 q^{78}+4600767 q^{77}+3312410 q^{76}-69631 q^{75}-4295721 q^{74}-7250018 q^{73}-7038624 q^{72}-3064728 q^{71}+3458772 q^{70}+9564329 q^{69}+11904596 q^{68}+8481876 q^{67}-127110 q^{66}-10320484 q^{65}-16996224 q^{64}-16013247 q^{63}-6427765 q^{62}+8135986 q^{61}+20830152 q^{60}+24710309 q^{59}+16239649 q^{58}-1944871 q^{57}-21701623 q^{56}-32924207 q^{55}-28421781 q^{54}-8547351 q^{53}+18203416 q^{52}+38688427 q^{51}+41268842 q^{50}+22629174 q^{49}-9727922 q^{48}-40298558 q^{47}-52668841 q^{46}-38661673 q^{45}-3265789 q^{44}+36818791 q^{43}+60675114 q^{42}+54508287 q^{41}+19350236 q^{40}-28369637 q^{39}-64052090 q^{38}-68100082 q^{37}-36505322 q^{36}+16059829 q^{35}+62539208 q^{34}+77949831 q^{33}+52680978 q^{32}-1622508 q^{31}-56831245 q^{30}-83452910 q^{29}-66273208 q^{28}-13063190 q^{27}+48269134 q^{26}+84870725 q^{25}+76415546 q^{24}+26435776 q^{23}-38413430 q^{22}-83109137 q^{21}-83022604 q^{20}-37518962 q^{19}+28658568 q^{18}+79366271 q^{17}+86611850 q^{16}+45992202 q^{15}-19960604 q^{14}-74793555 q^{13}-88046411 q^{12}-52101041 q^{11}+12750874 q^{10}+70271955 q^9+88260356 q^8+56446409 q^7-6976270 q^6-66276594 q^5-88039714 q^4-59795350 q^3+2203806 q^2+62882041 q+87910159+62882041 q^{-1} +2203806 q^{-2} -59795350 q^{-3} -88039714 q^{-4} -66276594 q^{-5} -6976270 q^{-6} +56446409 q^{-7} +88260356 q^{-8} +70271955 q^{-9} +12750874 q^{-10} -52101041 q^{-11} -88046411 q^{-12} -74793555 q^{-13} -19960604 q^{-14} +45992202 q^{-15} +86611850 q^{-16} +79366271 q^{-17} +28658568 q^{-18} -37518962 q^{-19} -83022604 q^{-20} -83109137 q^{-21} -38413430 q^{-22} +26435776 q^{-23} +76415546 q^{-24} +84870725 q^{-25} +48269134 q^{-26} -13063190 q^{-27} -66273208 q^{-28} -83452910 q^{-29} -56831245 q^{-30} -1622508 q^{-31} +52680978 q^{-32} +77949831 q^{-33} +62539208 q^{-34} +16059829 q^{-35} -36505322 q^{-36} -68100082 q^{-37} -64052090 q^{-38} -28369637 q^{-39} +19350236 q^{-40} +54508287 q^{-41} +60675114 q^{-42} +36818791 q^{-43} -3265789 q^{-44} -38661673 q^{-45} -52668841 q^{-46} -40298558 q^{-47} -9727922 q^{-48} +22629174 q^{-49} +41268842 q^{-50} +38688427 q^{-51} +18203416 q^{-52} -8547351 q^{-53} -28421781 q^{-54} -32924207 q^{-55} -21701623 q^{-56} -1944871 q^{-57} +16239649 q^{-58} +24710309 q^{-59} +20830152 q^{-60} +8135986 q^{-61} -6427765 q^{-62} -16013247 q^{-63} -16996224 q^{-64} -10320484 q^{-65} -127110 q^{-66} +8481876 q^{-67} +11904596 q^{-68} +9564329 q^{-69} +3458772 q^{-70} -3064728 q^{-71} -7038624 q^{-72} -7250018 q^{-73} -4295721 q^{-74} -69631 q^{-75} +3312410 q^{-76} +4600767 q^{-77} +3658056 q^{-78} +1359420 q^{-79} -992130 q^{-80} -2411772 q^{-81} -2486737 q^{-82} -1490425 q^{-83} -120295 q^{-84} +974072 q^{-85} +1386952 q^{-86} +1111993 q^{-87} +455543 q^{-88} -225618 q^{-89} -629387 q^{-90} -655018 q^{-91} -408671 q^{-92} -58409 q^{-93} +212678 q^{-94} +312390 q^{-95} +258889 q^{-96} +110481 q^{-97} -37709 q^{-98} -120485 q^{-99} -129393 q^{-100} -78969 q^{-101} -13156 q^{-102} +33340 q^{-103} +52772 q^{-104} +41839 q^{-105} +17046 q^{-106} -4883 q^{-107} -18195 q^{-108} -17220 q^{-109} -9312 q^{-110} -1660 q^{-111} +4577 q^{-112} +5950 q^{-113} +4250 q^{-114} +1720 q^{-115} -1295 q^{-116} -1890 q^{-117} -1137 q^{-118} -646 q^{-119} +136 q^{-120} +319 q^{-121} +395 q^{-122} +385 q^{-123} -115 q^{-124} -195 q^{-125} -42 q^{-126} -11 q^{-127} +36 q^{-128} -25 q^{-129} -9 q^{-130} +65 q^{-131} -15 q^{-132} -30 q^{-133} +6 q^{-135} +16 q^{-136} -10 q^{-137} -5 q^{-138} +5 q^{-139} - q^{-140} </math>}} |
|||
coloured_jones_4 = <math>q^{50}-5 q^{49}+5 q^{48}+10 q^{47}-16 q^{46}-q^{45}-25 q^{44}+50 q^{43}+75 q^{42}-111 q^{41}-76 q^{40}-144 q^{39}+300 q^{38}+521 q^{37}-300 q^{36}-645 q^{35}-1029 q^{34}+795 q^{33}+2396 q^{32}+536 q^{31}-1785 q^{30}-4555 q^{29}-371 q^{28}+5976 q^{27}+5172 q^{26}-707 q^{25}-11055 q^{24}-6857 q^{23}+7535 q^{22}+13845 q^{21}+6944 q^{20}-15956 q^{19}-18552 q^{18}+2209 q^{17}+21368 q^{16}+20543 q^{15}-14191 q^{14}-29641 q^{13}-9205 q^{12}+22728 q^{11}+33968 q^{10}-6460 q^9-35045 q^8-21175 q^7+18340 q^6+42330 q^5+2887 q^4-34554 q^3-29818 q^2+11268 q+44955+11268 q^{-1} -29818 q^{-2} -34554 q^{-3} +2887 q^{-4} +42330 q^{-5} +18340 q^{-6} -21175 q^{-7} -35045 q^{-8} -6460 q^{-9} +33968 q^{-10} +22728 q^{-11} -9205 q^{-12} -29641 q^{-13} -14191 q^{-14} +20543 q^{-15} +21368 q^{-16} +2209 q^{-17} -18552 q^{-18} -15956 q^{-19} +6944 q^{-20} +13845 q^{-21} +7535 q^{-22} -6857 q^{-23} -11055 q^{-24} -707 q^{-25} +5172 q^{-26} +5976 q^{-27} -371 q^{-28} -4555 q^{-29} -1785 q^{-30} +536 q^{-31} +2396 q^{-32} +795 q^{-33} -1029 q^{-34} -645 q^{-35} -300 q^{-36} +521 q^{-37} +300 q^{-38} -144 q^{-39} -76 q^{-40} -111 q^{-41} +75 q^{-42} +50 q^{-43} -25 q^{-44} - q^{-45} -16 q^{-46} +10 q^{-47} +5 q^{-48} -5 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{75}+5 q^{74}-5 q^{73}-10 q^{72}+16 q^{71}+6 q^{70}-5 q^{69}-5 q^{68}-30 q^{67}-25 q^{66}+82 q^{65}+120 q^{64}-26 q^{63}-216 q^{62}-316 q^{61}-60 q^{60}+551 q^{59}+1025 q^{58}+464 q^{57}-1237 q^{56}-2571 q^{55}-1825 q^{54}+1562 q^{53}+5586 q^{52}+5808 q^{51}-618 q^{50}-9956 q^{49}-13478 q^{48}-4712 q^{47}+13601 q^{46}+26496 q^{45}+17652 q^{44}-12935 q^{43}-42692 q^{42}-41331 q^{41}+1497 q^{40}+57823 q^{39}+75942 q^{38}+25990 q^{37}-63660 q^{36}-117173 q^{35}-72692 q^{34}+51927 q^{33}+156391 q^{32}+136191 q^{31}-16419 q^{30}-183351 q^{29}-208746 q^{28}-43200 q^{27}+188890 q^{26}+279271 q^{25}+121855 q^{24}-169188 q^{23}-337053 q^{22}-209298 q^{21}+125956 q^{20}+374479 q^{19}+294696 q^{18}-65918 q^{17}-389525 q^{16}-368820 q^{15}-1823 q^{14}+384561 q^{13}+426473 q^{12}+69028 q^{11}-364895 q^{10}-466752 q^9-130155 q^8+336393 q^7+491875 q^6+182697 q^5-303191 q^4-504874 q^3-227767 q^2+267093 q+509105+267093 q^{-1} -227767 q^{-2} -504874 q^{-3} -303191 q^{-4} +182697 q^{-5} +491875 q^{-6} +336393 q^{-7} -130155 q^{-8} -466752 q^{-9} -364895 q^{-10} +69028 q^{-11} +426473 q^{-12} +384561 q^{-13} -1823 q^{-14} -368820 q^{-15} -389525 q^{-16} -65918 q^{-17} +294696 q^{-18} +374479 q^{-19} +125956 q^{-20} -209298 q^{-21} -337053 q^{-22} -169188 q^{-23} +121855 q^{-24} +279271 q^{-25} +188890 q^{-26} -43200 q^{-27} -208746 q^{-28} -183351 q^{-29} -16419 q^{-30} +136191 q^{-31} +156391 q^{-32} +51927 q^{-33} -72692 q^{-34} -117173 q^{-35} -63660 q^{-36} +25990 q^{-37} +75942 q^{-38} +57823 q^{-39} +1497 q^{-40} -41331 q^{-41} -42692 q^{-42} -12935 q^{-43} +17652 q^{-44} +26496 q^{-45} +13601 q^{-46} -4712 q^{-47} -13478 q^{-48} -9956 q^{-49} -618 q^{-50} +5808 q^{-51} +5586 q^{-52} +1562 q^{-53} -1825 q^{-54} -2571 q^{-55} -1237 q^{-56} +464 q^{-57} +1025 q^{-58} +551 q^{-59} -60 q^{-60} -316 q^{-61} -216 q^{-62} -26 q^{-63} +120 q^{-64} +82 q^{-65} -25 q^{-66} -30 q^{-67} -5 q^{-68} -5 q^{-69} +6 q^{-70} +16 q^{-71} -10 q^{-72} -5 q^{-73} +5 q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{105}-5 q^{104}+5 q^{103}+10 q^{102}-16 q^{101}-6 q^{100}+35 q^{98}-15 q^{97}-20 q^{96}+54 q^{95}-111 q^{94}-45 q^{93}+67 q^{92}+286 q^{91}+100 q^{90}-200 q^{89}-160 q^{88}-876 q^{87}-519 q^{86}+547 q^{85}+2266 q^{84}+2135 q^{83}+369 q^{82}-1755 q^{81}-6510 q^{80}-6759 q^{79}-1634 q^{78}+9549 q^{77}+16670 q^{76}+15089 q^{75}+3490 q^{74}-23671 q^{73}-42311 q^{72}-38074 q^{71}+2177 q^{70}+53656 q^{69}+89894 q^{68}+80429 q^{67}-5927 q^{66}-116971 q^{65}-188750 q^{64}-139516 q^{63}+17510 q^{62}+223702 q^{61}+350846 q^{60}+248163 q^{59}-55084 q^{58}-421057 q^{57}-579766 q^{56}-398132 q^{55}+125462 q^{54}+718160 q^{53}+933692 q^{52}+566398 q^{51}-296113 q^{50}-1120591 q^{49}-1390524 q^{48}-737424 q^{47}+576892 q^{46}+1714502 q^{45}+1904108 q^{44}+799778 q^{43}-994356 q^{42}-2457541 q^{41}-2432667 q^{40}-718282 q^{39}+1687441 q^{38}+3280016 q^{37}+2803073 q^{36}+415859 q^{35}-2605860 q^{34}-4118660 q^{33}-2944138 q^{32}+316119 q^{31}+3666270 q^{30}+4743125 q^{29}+2723860 q^{28}-1414996 q^{27}-4788145 q^{26}-5050456 q^{25}-1878123 q^{24}+2771269 q^{23}+5680763 q^{22}+4861446 q^{21}+506904 q^{20}-4269721 q^{19}-6201858 q^{18}-3876461 q^{17}+1233253 q^{16}+5545016 q^{15}+6124552 q^{14}+2246899 q^{13}-3178939 q^{12}-6406680 q^{11}-5126450 q^{10}-178345 q^9+4894067 q^8+6587383 q^7+3410011 q^6-2125705 q^5-6152435 q^4-5762576 q^3-1219025 q^2+4184939 q+6671309+4184939 q^{-1} -1219025 q^{-2} -5762576 q^{-3} -6152435 q^{-4} -2125705 q^{-5} +3410011 q^{-6} +6587383 q^{-7} +4894067 q^{-8} -178345 q^{-9} -5126450 q^{-10} -6406680 q^{-11} -3178939 q^{-12} +2246899 q^{-13} +6124552 q^{-14} +5545016 q^{-15} +1233253 q^{-16} -3876461 q^{-17} -6201858 q^{-18} -4269721 q^{-19} +506904 q^{-20} +4861446 q^{-21} +5680763 q^{-22} +2771269 q^{-23} -1878123 q^{-24} -5050456 q^{-25} -4788145 q^{-26} -1414996 q^{-27} +2723860 q^{-28} +4743125 q^{-29} +3666270 q^{-30} +316119 q^{-31} -2944138 q^{-32} -4118660 q^{-33} -2605860 q^{-34} +415859 q^{-35} +2803073 q^{-36} +3280016 q^{-37} +1687441 q^{-38} -718282 q^{-39} -2432667 q^{-40} -2457541 q^{-41} -994356 q^{-42} +799778 q^{-43} +1904108 q^{-44} +1714502 q^{-45} +576892 q^{-46} -737424 q^{-47} -1390524 q^{-48} -1120591 q^{-49} -296113 q^{-50} +566398 q^{-51} +933692 q^{-52} +718160 q^{-53} +125462 q^{-54} -398132 q^{-55} -579766 q^{-56} -421057 q^{-57} -55084 q^{-58} +248163 q^{-59} +350846 q^{-60} +223702 q^{-61} +17510 q^{-62} -139516 q^{-63} -188750 q^{-64} -116971 q^{-65} -5927 q^{-66} +80429 q^{-67} +89894 q^{-68} +53656 q^{-69} +2177 q^{-70} -38074 q^{-71} -42311 q^{-72} -23671 q^{-73} +3490 q^{-74} +15089 q^{-75} +16670 q^{-76} +9549 q^{-77} -1634 q^{-78} -6759 q^{-79} -6510 q^{-80} -1755 q^{-81} +369 q^{-82} +2135 q^{-83} +2266 q^{-84} +547 q^{-85} -519 q^{-86} -876 q^{-87} -160 q^{-88} -200 q^{-89} +100 q^{-90} +286 q^{-91} +67 q^{-92} -45 q^{-93} -111 q^{-94} +54 q^{-95} -20 q^{-96} -15 q^{-97} +35 q^{-98} -6 q^{-100} -16 q^{-101} +10 q^{-102} +5 q^{-103} -5 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>-q^{140}+5 q^{139}-5 q^{138}-10 q^{137}+16 q^{136}+6 q^{135}-30 q^{133}-15 q^{132}+65 q^{131}-9 q^{130}-25 q^{129}+36 q^{128}-11 q^{127}-42 q^{126}-195 q^{125}-115 q^{124}+385 q^{123}+395 q^{122}+319 q^{121}+136 q^{120}-646 q^{119}-1137 q^{118}-1890 q^{117}-1295 q^{116}+1720 q^{115}+4250 q^{114}+5950 q^{113}+4577 q^{112}-1660 q^{111}-9312 q^{110}-17220 q^{109}-18195 q^{108}-4883 q^{107}+17046 q^{106}+41839 q^{105}+52772 q^{104}+33340 q^{103}-13156 q^{102}-78969 q^{101}-129393 q^{100}-120485 q^{99}-37709 q^{98}+110481 q^{97}+258889 q^{96}+312390 q^{95}+212678 q^{94}-58409 q^{93}-408671 q^{92}-655018 q^{91}-629387 q^{90}-225618 q^{89}+455543 q^{88}+1111993 q^{87}+1386952 q^{86}+974072 q^{85}-120295 q^{84}-1490425 q^{83}-2486737 q^{82}-2411772 q^{81}-992130 q^{80}+1359420 q^{79}+3658056 q^{78}+4600767 q^{77}+3312410 q^{76}-69631 q^{75}-4295721 q^{74}-7250018 q^{73}-7038624 q^{72}-3064728 q^{71}+3458772 q^{70}+9564329 q^{69}+11904596 q^{68}+8481876 q^{67}-127110 q^{66}-10320484 q^{65}-16996224 q^{64}-16013247 q^{63}-6427765 q^{62}+8135986 q^{61}+20830152 q^{60}+24710309 q^{59}+16239649 q^{58}-1944871 q^{57}-21701623 q^{56}-32924207 q^{55}-28421781 q^{54}-8547351 q^{53}+18203416 q^{52}+38688427 q^{51}+41268842 q^{50}+22629174 q^{49}-9727922 q^{48}-40298558 q^{47}-52668841 q^{46}-38661673 q^{45}-3265789 q^{44}+36818791 q^{43}+60675114 q^{42}+54508287 q^{41}+19350236 q^{40}-28369637 q^{39}-64052090 q^{38}-68100082 q^{37}-36505322 q^{36}+16059829 q^{35}+62539208 q^{34}+77949831 q^{33}+52680978 q^{32}-1622508 q^{31}-56831245 q^{30}-83452910 q^{29}-66273208 q^{28}-13063190 q^{27}+48269134 q^{26}+84870725 q^{25}+76415546 q^{24}+26435776 q^{23}-38413430 q^{22}-83109137 q^{21}-83022604 q^{20}-37518962 q^{19}+28658568 q^{18}+79366271 q^{17}+86611850 q^{16}+45992202 q^{15}-19960604 q^{14}-74793555 q^{13}-88046411 q^{12}-52101041 q^{11}+12750874 q^{10}+70271955 q^9+88260356 q^8+56446409 q^7-6976270 q^6-66276594 q^5-88039714 q^4-59795350 q^3+2203806 q^2+62882041 q+87910159+62882041 q^{-1} +2203806 q^{-2} -59795350 q^{-3} -88039714 q^{-4} -66276594 q^{-5} -6976270 q^{-6} +56446409 q^{-7} +88260356 q^{-8} +70271955 q^{-9} +12750874 q^{-10} -52101041 q^{-11} -88046411 q^{-12} -74793555 q^{-13} -19960604 q^{-14} +45992202 q^{-15} +86611850 q^{-16} +79366271 q^{-17} +28658568 q^{-18} -37518962 q^{-19} -83022604 q^{-20} -83109137 q^{-21} -38413430 q^{-22} +26435776 q^{-23} +76415546 q^{-24} +84870725 q^{-25} +48269134 q^{-26} -13063190 q^{-27} -66273208 q^{-28} -83452910 q^{-29} -56831245 q^{-30} -1622508 q^{-31} +52680978 q^{-32} +77949831 q^{-33} +62539208 q^{-34} +16059829 q^{-35} -36505322 q^{-36} -68100082 q^{-37} -64052090 q^{-38} -28369637 q^{-39} +19350236 q^{-40} +54508287 q^{-41} +60675114 q^{-42} +36818791 q^{-43} -3265789 q^{-44} -38661673 q^{-45} -52668841 q^{-46} -40298558 q^{-47} -9727922 q^{-48} +22629174 q^{-49} +41268842 q^{-50} +38688427 q^{-51} +18203416 q^{-52} -8547351 q^{-53} -28421781 q^{-54} -32924207 q^{-55} -21701623 q^{-56} -1944871 q^{-57} +16239649 q^{-58} +24710309 q^{-59} +20830152 q^{-60} +8135986 q^{-61} -6427765 q^{-62} -16013247 q^{-63} -16996224 q^{-64} -10320484 q^{-65} -127110 q^{-66} +8481876 q^{-67} +11904596 q^{-68} +9564329 q^{-69} +3458772 q^{-70} -3064728 q^{-71} -7038624 q^{-72} -7250018 q^{-73} -4295721 q^{-74} -69631 q^{-75} +3312410 q^{-76} +4600767 q^{-77} +3658056 q^{-78} +1359420 q^{-79} -992130 q^{-80} -2411772 q^{-81} -2486737 q^{-82} -1490425 q^{-83} -120295 q^{-84} +974072 q^{-85} +1386952 q^{-86} +1111993 q^{-87} +455543 q^{-88} -225618 q^{-89} -629387 q^{-90} -655018 q^{-91} -408671 q^{-92} -58409 q^{-93} +212678 q^{-94} +312390 q^{-95} +258889 q^{-96} +110481 q^{-97} -37709 q^{-98} -120485 q^{-99} -129393 q^{-100} -78969 q^{-101} -13156 q^{-102} +33340 q^{-103} +52772 q^{-104} +41839 q^{-105} +17046 q^{-106} -4883 q^{-107} -18195 q^{-108} -17220 q^{-109} -9312 q^{-110} -1660 q^{-111} +4577 q^{-112} +5950 q^{-113} +4250 q^{-114} +1720 q^{-115} -1295 q^{-116} -1890 q^{-117} -1137 q^{-118} -646 q^{-119} +136 q^{-120} +319 q^{-121} +395 q^{-122} +385 q^{-123} -115 q^{-124} -195 q^{-125} -42 q^{-126} -11 q^{-127} +36 q^{-128} -25 q^{-129} -9 q^{-130} +65 q^{-131} -15 q^{-132} -30 q^{-133} +6 q^{-135} +16 q^{-136} -10 q^{-137} -5 q^{-138} +5 q^{-139} - q^{-140} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 123]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[4, 18, 5, 17], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 123]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 2, 9, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[4, 18, 5, 17], |
|||
X[18, 11, 19, 12], X[2, 15, 3, 16], X[16, 10, 17, 9], |
X[18, 11, 19, 12], X[2, 15, 3, 16], X[16, 10, 17, 9], |
||
X[20, 14, 1, 13], X[14, 7, 15, 8], X[6, 19, 7, 20]]</nowiki></ |
X[20, 14, 1, 13], X[14, 7, 15, 8], X[6, 19, 7, 20]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 123]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 123]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -6, 2, -4, 3, -10, 9, -1, 7, -2, 5, -3, 8, -9, 6, -7, 4, |
|||
-5, 10, -8]</nowiki></ |
-5, 10, -8]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 123]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 123]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 123]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[8, 10, 12, 14, 16, 18, 20, 2, 4, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 123]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, 2, -1, 2, -1, 2, -1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 123]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_123_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 123]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 123]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 123]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 123]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_123_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 123]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 2, 4, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 123]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 6 15 24 2 3 4 |
|||
29 + t - -- + -- - -- - 24 t + 15 t - 6 t + t |
29 + t - -- + -- - -- - 24 t + 15 t - 6 t + t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 123]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 123]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 - 2 z - z + 2 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 123]], KnotSignature[Knot[10, 123]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{121, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 5 10 15 19 2 3 4 5 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 123], Knot[11, Alternating, 28]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 123]], KnotSignature[Knot[10, 123]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{121, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 123]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 5 10 15 19 2 3 4 5 |
|||
21 - q + -- - -- + -- - -- - 19 q + 15 q - 10 q + 5 q - q |
21 - q + -- - -- + -- - -- - 19 q + 15 q - 10 q + 5 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 123]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 123]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 123]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 3 2 3 3 4 2 4 8 10 |
|||
-5 - q + --- - --- + -- - -- + -- + 4 q - 3 q + 3 q - 2 q + |
-5 - q + --- - --- + -- - -- + -- + 4 q - 3 q + 3 q - 2 q + |
||
12 10 8 4 2 |
12 10 8 4 2 |
||
Line 145: | Line 179: | ||
12 14 |
12 14 |
||
3 q - q</nowiki></ |
3 q - q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 123]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 123]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
2 2 2 z 2 2 4 2 z 2 4 6 |
2 2 2 z 2 2 4 2 z 2 4 6 |
||
-3 + -- + 2 a - 4 z + -- + a z + 3 z - ---- - 2 a z + 4 z - |
-3 + -- + 2 a - 4 z + -- + a z + 3 z - ---- - 2 a z + 4 z - |
||
Line 158: | Line 196: | ||
-- - a z + z |
-- - a z + z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 123]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 123]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 3 |
|||
2 2 2 z 2 6 z 2 2 5 z 21 z |
2 2 2 z 2 6 z 2 2 5 z 21 z |
||
-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + ----- + |
-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + ----- + |
||
Line 189: | Line 231: | ||
----- + 10 a z + ---- + 4 a z |
----- + 10 a z + ---- + 4 a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 123]], Vassiliev[3][Knot[10, 123]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 123]], Vassiliev[3][Knot[10, 123]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 123]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 123]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11 1 4 1 6 4 9 6 |
|||
-- + 11 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
-- + 11 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 206: | Line 256: | ||
7 3 7 4 9 4 11 5 |
7 3 7 4 9 4 11 5 |
||
6 q t + q t + 4 q t + q t</nowiki></ |
6 q t + q t + 4 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 123], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 123], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 5 5 15 41 14 80 121 10 206 197 |
|||
383 + q - --- + --- + --- - --- + --- + -- - --- - -- + --- - --- - |
383 + q - --- + --- + --- - --- + --- + -- - --- - -- + --- - --- - |
||
14 13 12 11 10 9 8 7 6 5 |
14 13 12 11 10 9 8 7 6 5 |
||
Line 223: | Line 277: | ||
14 15 |
14 15 |
||
5 q + q</nowiki></ |
5 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 16:58, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 123's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
10_123 can be depicted with five-fold rotational symmetry (like 5 1). |
Knot presentations
Planar diagram presentation | X8291 X10,3,11,4 X12,6,13,5 X4,18,5,17 X18,11,19,12 X2,15,3,16 X16,10,17,9 X20,14,1,13 X14,7,15,8 X6,19,7,20 |
Gauss code | 1, -6, 2, -4, 3, -10, 9, -1, 7, -2, 5, -3, 8, -9, 6, -7, 4, -5, 10, -8 |
Dowker-Thistlethwaite code | 8 10 12 14 16 18 20 2 4 6 |
Conway Notation | [10*] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 10}, {2, 8}, {9, 7}, {8, 11}, {10, 6}, {7, 12}, {11, 4}, {5, 3}, {4, 1}, {6, 2}, {12, 5}, {1, 9}] |
[edit Notes on presentations of 10 123]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 123"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X8291 X10,3,11,4 X12,6,13,5 X4,18,5,17 X18,11,19,12 X2,15,3,16 X16,10,17,9 X20,14,1,13 X14,7,15,8 X6,19,7,20 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -6, 2, -4, 3, -10, 9, -1, 7, -2, 5, -3, 8, -9, 6, -7, 4, -5, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
8 10 12 14 16 18 20 2 4 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[10*] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 8}, {9, 7}, {8, 11}, {10, 6}, {7, 12}, {11, 4}, {5, 3}, {4, 1}, {6, 2}, {12, 5}, {1, 9}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 123"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 121, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a28,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 123"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a28,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 123. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|