10 49: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 49 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,9,-10,2,-5,7,-6,8,-9,3,-4,5,-7,6,-8,4/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=49|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,9,-10,2,-5,7,-6,8,-9,3,-4,5,-7,6,-8,4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-10</td ><td width=6.66667%>-9</td ><td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-10</td ><td width=6.66667%>-9</td ><td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>-1</td></tr>
Line 72: Line 40:
<tr align=center><td>-25</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-25</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-6} -2 q^{-7} + q^{-8} +7 q^{-9} -10 q^{-10} -3 q^{-11} +24 q^{-12} -19 q^{-13} -18 q^{-14} +46 q^{-15} -20 q^{-16} -41 q^{-17} +65 q^{-18} -14 q^{-19} -62 q^{-20} +72 q^{-21} -3 q^{-22} -69 q^{-23} +63 q^{-24} +6 q^{-25} -56 q^{-26} +41 q^{-27} +7 q^{-28} -32 q^{-29} +20 q^{-30} +4 q^{-31} -13 q^{-32} +7 q^{-33} + q^{-34} -3 q^{-35} + q^{-36} </math> |

coloured_jones_3 = <math> q^{-9} -2 q^{-10} + q^{-11} +3 q^{-12} +2 q^{-13} -10 q^{-14} -3 q^{-15} +17 q^{-16} +16 q^{-17} -30 q^{-18} -28 q^{-19} +29 q^{-20} +62 q^{-21} -35 q^{-22} -83 q^{-23} +11 q^{-24} +121 q^{-25} +6 q^{-26} -133 q^{-27} -55 q^{-28} +158 q^{-29} +83 q^{-30} -146 q^{-31} -138 q^{-32} +150 q^{-33} +165 q^{-34} -125 q^{-35} -209 q^{-36} +111 q^{-37} +232 q^{-38} -85 q^{-39} -250 q^{-40} +57 q^{-41} +259 q^{-42} -33 q^{-43} -246 q^{-44} +3 q^{-45} +228 q^{-46} +10 q^{-47} -183 q^{-48} -30 q^{-49} +150 q^{-50} +23 q^{-51} -100 q^{-52} -25 q^{-53} +72 q^{-54} +11 q^{-55} -43 q^{-56} -7 q^{-57} +30 q^{-58} - q^{-59} -18 q^{-60} + q^{-61} +13 q^{-62} -2 q^{-63} -8 q^{-64} +2 q^{-65} +3 q^{-66} + q^{-67} -3 q^{-68} + q^{-69} </math> |
{{Display Coloured Jones|J2=<math> q^{-6} -2 q^{-7} + q^{-8} +7 q^{-9} -10 q^{-10} -3 q^{-11} +24 q^{-12} -19 q^{-13} -18 q^{-14} +46 q^{-15} -20 q^{-16} -41 q^{-17} +65 q^{-18} -14 q^{-19} -62 q^{-20} +72 q^{-21} -3 q^{-22} -69 q^{-23} +63 q^{-24} +6 q^{-25} -56 q^{-26} +41 q^{-27} +7 q^{-28} -32 q^{-29} +20 q^{-30} +4 q^{-31} -13 q^{-32} +7 q^{-33} + q^{-34} -3 q^{-35} + q^{-36} </math>|J3=<math> q^{-9} -2 q^{-10} + q^{-11} +3 q^{-12} +2 q^{-13} -10 q^{-14} -3 q^{-15} +17 q^{-16} +16 q^{-17} -30 q^{-18} -28 q^{-19} +29 q^{-20} +62 q^{-21} -35 q^{-22} -83 q^{-23} +11 q^{-24} +121 q^{-25} +6 q^{-26} -133 q^{-27} -55 q^{-28} +158 q^{-29} +83 q^{-30} -146 q^{-31} -138 q^{-32} +150 q^{-33} +165 q^{-34} -125 q^{-35} -209 q^{-36} +111 q^{-37} +232 q^{-38} -85 q^{-39} -250 q^{-40} +57 q^{-41} +259 q^{-42} -33 q^{-43} -246 q^{-44} +3 q^{-45} +228 q^{-46} +10 q^{-47} -183 q^{-48} -30 q^{-49} +150 q^{-50} +23 q^{-51} -100 q^{-52} -25 q^{-53} +72 q^{-54} +11 q^{-55} -43 q^{-56} -7 q^{-57} +30 q^{-58} - q^{-59} -18 q^{-60} + q^{-61} +13 q^{-62} -2 q^{-63} -8 q^{-64} +2 q^{-65} +3 q^{-66} + q^{-67} -3 q^{-68} + q^{-69} </math>|J4=<math> q^{-12} -2 q^{-13} + q^{-14} +3 q^{-15} -2 q^{-16} +2 q^{-17} -11 q^{-18} +3 q^{-19} +19 q^{-20} +6 q^{-22} -50 q^{-23} -15 q^{-24} +55 q^{-25} +36 q^{-26} +52 q^{-27} -121 q^{-28} -100 q^{-29} +50 q^{-30} +92 q^{-31} +212 q^{-32} -137 q^{-33} -229 q^{-34} -75 q^{-35} +50 q^{-36} +439 q^{-37} -3 q^{-38} -246 q^{-39} -266 q^{-40} -195 q^{-41} +558 q^{-42} +219 q^{-43} -41 q^{-44} -346 q^{-45} -565 q^{-46} +449 q^{-47} +352 q^{-48} +322 q^{-49} -215 q^{-50} -892 q^{-51} +178 q^{-52} +312 q^{-53} +683 q^{-54} +57 q^{-55} -1086 q^{-56} -123 q^{-57} +165 q^{-58} +957 q^{-59} +347 q^{-60} -1163 q^{-61} -385 q^{-62} -12 q^{-63} +1125 q^{-64} +604 q^{-65} -1120 q^{-66} -589 q^{-67} -216 q^{-68} +1146 q^{-69} +802 q^{-70} -909 q^{-71} -658 q^{-72} -437 q^{-73} +937 q^{-74} +864 q^{-75} -548 q^{-76} -516 q^{-77} -569 q^{-78} +553 q^{-79} +707 q^{-80} -210 q^{-81} -223 q^{-82} -503 q^{-83} +195 q^{-84} +407 q^{-85} -44 q^{-86} +22 q^{-87} -304 q^{-88} +20 q^{-89} +151 q^{-90} -27 q^{-91} +105 q^{-92} -125 q^{-93} -8 q^{-94} +31 q^{-95} -42 q^{-96} +76 q^{-97} -35 q^{-98} +5 q^{-99} +3 q^{-100} -34 q^{-101} +31 q^{-102} -8 q^{-103} +7 q^{-104} +2 q^{-105} -14 q^{-106} +7 q^{-107} -2 q^{-108} +3 q^{-109} + q^{-110} -3 q^{-111} + q^{-112} </math>|J5=<math> q^{-15} -2 q^{-16} + q^{-17} +3 q^{-18} -2 q^{-19} -2 q^{-20} + q^{-21} -5 q^{-22} +4 q^{-23} +16 q^{-24} +3 q^{-25} -16 q^{-26} -15 q^{-27} -26 q^{-28} +9 q^{-29} +59 q^{-30} +60 q^{-31} -9 q^{-32} -75 q^{-33} -128 q^{-34} -62 q^{-35} +111 q^{-36} +220 q^{-37} +154 q^{-38} -51 q^{-39} -318 q^{-40} -338 q^{-41} -45 q^{-42} +336 q^{-43} +505 q^{-44} +313 q^{-45} -272 q^{-46} -682 q^{-47} -541 q^{-48} +13 q^{-49} +648 q^{-50} +884 q^{-51} +332 q^{-52} -515 q^{-53} -962 q^{-54} -759 q^{-55} +44 q^{-56} +967 q^{-57} +1110 q^{-58} +444 q^{-59} -541 q^{-60} -1290 q^{-61} -1129 q^{-62} +5 q^{-63} +1184 q^{-64} +1603 q^{-65} +881 q^{-66} -792 q^{-67} -2058 q^{-68} -1669 q^{-69} +111 q^{-70} +2105 q^{-71} +2624 q^{-72} +735 q^{-73} -2083 q^{-74} -3268 q^{-75} -1679 q^{-76} +1673 q^{-77} +3936 q^{-78} +2621 q^{-79} -1305 q^{-80} -4281 q^{-81} -3476 q^{-82} +726 q^{-83} +4614 q^{-84} +4245 q^{-85} -263 q^{-86} -4766 q^{-87} -4888 q^{-88} -246 q^{-89} +4898 q^{-90} +5453 q^{-91} +696 q^{-92} -4953 q^{-93} -5942 q^{-94} -1145 q^{-95} +4912 q^{-96} +6344 q^{-97} +1666 q^{-98} -4761 q^{-99} -6647 q^{-100} -2184 q^{-101} +4356 q^{-102} +6783 q^{-103} +2788 q^{-104} -3794 q^{-105} -6656 q^{-106} -3288 q^{-107} +2924 q^{-108} +6252 q^{-109} +3736 q^{-110} -2038 q^{-111} -5513 q^{-112} -3845 q^{-113} +993 q^{-114} +4554 q^{-115} +3790 q^{-116} -202 q^{-117} -3461 q^{-118} -3336 q^{-119} -493 q^{-120} +2381 q^{-121} +2807 q^{-122} +813 q^{-123} -1446 q^{-124} -2102 q^{-125} -967 q^{-126} +736 q^{-127} +1485 q^{-128} +874 q^{-129} -256 q^{-130} -919 q^{-131} -739 q^{-132} -3 q^{-133} +535 q^{-134} +512 q^{-135} +127 q^{-136} -245 q^{-137} -353 q^{-138} -151 q^{-139} +105 q^{-140} +196 q^{-141} +124 q^{-142} -12 q^{-143} -100 q^{-144} -95 q^{-145} -17 q^{-146} +51 q^{-147} +50 q^{-148} +18 q^{-149} -6 q^{-150} -30 q^{-151} -24 q^{-152} +9 q^{-153} +13 q^{-154} +2 q^{-155} +9 q^{-156} -4 q^{-157} -10 q^{-158} + q^{-159} +3 q^{-160} -2 q^{-161} +3 q^{-162} + q^{-163} -3 q^{-164} + q^{-165} </math>|J6=<math> q^{-18} -2 q^{-19} + q^{-20} +3 q^{-21} -2 q^{-22} -2 q^{-23} -3 q^{-24} +7 q^{-25} -4 q^{-26} + q^{-27} +18 q^{-28} -6 q^{-29} -14 q^{-30} -26 q^{-31} +11 q^{-32} -3 q^{-33} +16 q^{-34} +80 q^{-35} +18 q^{-36} -35 q^{-37} -124 q^{-38} -53 q^{-39} -70 q^{-40} +31 q^{-41} +273 q^{-42} +215 q^{-43} +92 q^{-44} -255 q^{-45} -282 q^{-46} -451 q^{-47} -242 q^{-48} +426 q^{-49} +679 q^{-50} +722 q^{-51} +56 q^{-52} -289 q^{-53} -1139 q^{-54} -1213 q^{-55} -192 q^{-56} +726 q^{-57} +1596 q^{-58} +1172 q^{-59} +883 q^{-60} -1033 q^{-61} -2196 q^{-62} -1764 q^{-63} -709 q^{-64} +1146 q^{-65} +1823 q^{-66} +2971 q^{-67} +931 q^{-68} -1169 q^{-69} -2337 q^{-70} -2724 q^{-71} -1479 q^{-72} -319 q^{-73} +3247 q^{-74} +3080 q^{-75} +2287 q^{-76} +569 q^{-77} -1923 q^{-78} -3765 q^{-79} -5031 q^{-80} -741 q^{-81} +1534 q^{-82} +4841 q^{-83} +6038 q^{-84} +3853 q^{-85} -1567 q^{-86} -8292 q^{-87} -7378 q^{-88} -5412 q^{-89} +2308 q^{-90} +9640 q^{-91} +12321 q^{-92} +6273 q^{-93} -6117 q^{-94} -12041 q^{-95} -14969 q^{-96} -5916 q^{-97} +7818 q^{-98} +18862 q^{-99} +16640 q^{-100} +1555 q^{-101} -11654 q^{-102} -22733 q^{-103} -16559 q^{-104} +992 q^{-105} +20875 q^{-106} +25452 q^{-107} +11417 q^{-108} -6958 q^{-109} -26535 q^{-110} -25864 q^{-111} -7635 q^{-112} +19197 q^{-113} +30886 q^{-114} +20112 q^{-115} -894 q^{-116} -27214 q^{-117} -32251 q^{-118} -15125 q^{-119} +16299 q^{-120} +33658 q^{-121} +26376 q^{-122} +4206 q^{-123} -26760 q^{-124} -36359 q^{-125} -20636 q^{-126} +13767 q^{-127} +35282 q^{-128} +30977 q^{-129} +8172 q^{-130} -26057 q^{-131} -39398 q^{-132} -25252 q^{-133} +10985 q^{-134} +35995 q^{-135} +35014 q^{-136} +12603 q^{-137} -23783 q^{-138} -41087 q^{-139} -30043 q^{-140} +5916 q^{-141} +33877 q^{-142} +37709 q^{-143} +18451 q^{-144} -17672 q^{-145} -38986 q^{-146} -33663 q^{-147} -1981 q^{-148} +26646 q^{-149} +36104 q^{-150} +23614 q^{-151} -7840 q^{-152} -30942 q^{-153} -32690 q^{-154} -9664 q^{-155} +15236 q^{-156} +28304 q^{-157} +24224 q^{-158} +1736 q^{-159} -18758 q^{-160} -25605 q^{-161} -12863 q^{-162} +4383 q^{-163} +16862 q^{-164} +19110 q^{-165} +6667 q^{-166} -7621 q^{-167} -15495 q^{-168} -10696 q^{-169} -1703 q^{-170} +6957 q^{-171} +11498 q^{-172} +6459 q^{-173} -1231 q^{-174} -7100 q^{-175} -6233 q^{-176} -2976 q^{-177} +1467 q^{-178} +5371 q^{-179} +4009 q^{-180} +812 q^{-181} -2451 q^{-182} -2655 q^{-183} -2075 q^{-184} -390 q^{-185} +2030 q^{-186} +1869 q^{-187} +854 q^{-188} -626 q^{-189} -813 q^{-190} -1033 q^{-191} -604 q^{-192} +648 q^{-193} +695 q^{-194} +490 q^{-195} -95 q^{-196} -125 q^{-197} -408 q^{-198} -396 q^{-199} +171 q^{-200} +195 q^{-201} +211 q^{-202} +6 q^{-203} +49 q^{-204} -122 q^{-205} -184 q^{-206} +37 q^{-207} +30 q^{-208} +68 q^{-209} +2 q^{-210} +48 q^{-211} -24 q^{-212} -62 q^{-213} +10 q^{-214} -3 q^{-215} +17 q^{-216} -5 q^{-217} +19 q^{-218} -2 q^{-219} -16 q^{-220} +5 q^{-221} -3 q^{-222} +3 q^{-223} -2 q^{-224} +3 q^{-225} + q^{-226} -3 q^{-227} + q^{-228} </math>|J7=Not Available}}
coloured_jones_4 = <math> q^{-12} -2 q^{-13} + q^{-14} +3 q^{-15} -2 q^{-16} +2 q^{-17} -11 q^{-18} +3 q^{-19} +19 q^{-20} +6 q^{-22} -50 q^{-23} -15 q^{-24} +55 q^{-25} +36 q^{-26} +52 q^{-27} -121 q^{-28} -100 q^{-29} +50 q^{-30} +92 q^{-31} +212 q^{-32} -137 q^{-33} -229 q^{-34} -75 q^{-35} +50 q^{-36} +439 q^{-37} -3 q^{-38} -246 q^{-39} -266 q^{-40} -195 q^{-41} +558 q^{-42} +219 q^{-43} -41 q^{-44} -346 q^{-45} -565 q^{-46} +449 q^{-47} +352 q^{-48} +322 q^{-49} -215 q^{-50} -892 q^{-51} +178 q^{-52} +312 q^{-53} +683 q^{-54} +57 q^{-55} -1086 q^{-56} -123 q^{-57} +165 q^{-58} +957 q^{-59} +347 q^{-60} -1163 q^{-61} -385 q^{-62} -12 q^{-63} +1125 q^{-64} +604 q^{-65} -1120 q^{-66} -589 q^{-67} -216 q^{-68} +1146 q^{-69} +802 q^{-70} -909 q^{-71} -658 q^{-72} -437 q^{-73} +937 q^{-74} +864 q^{-75} -548 q^{-76} -516 q^{-77} -569 q^{-78} +553 q^{-79} +707 q^{-80} -210 q^{-81} -223 q^{-82} -503 q^{-83} +195 q^{-84} +407 q^{-85} -44 q^{-86} +22 q^{-87} -304 q^{-88} +20 q^{-89} +151 q^{-90} -27 q^{-91} +105 q^{-92} -125 q^{-93} -8 q^{-94} +31 q^{-95} -42 q^{-96} +76 q^{-97} -35 q^{-98} +5 q^{-99} +3 q^{-100} -34 q^{-101} +31 q^{-102} -8 q^{-103} +7 q^{-104} +2 q^{-105} -14 q^{-106} +7 q^{-107} -2 q^{-108} +3 q^{-109} + q^{-110} -3 q^{-111} + q^{-112} </math> |

coloured_jones_5 = <math> q^{-15} -2 q^{-16} + q^{-17} +3 q^{-18} -2 q^{-19} -2 q^{-20} + q^{-21} -5 q^{-22} +4 q^{-23} +16 q^{-24} +3 q^{-25} -16 q^{-26} -15 q^{-27} -26 q^{-28} +9 q^{-29} +59 q^{-30} +60 q^{-31} -9 q^{-32} -75 q^{-33} -128 q^{-34} -62 q^{-35} +111 q^{-36} +220 q^{-37} +154 q^{-38} -51 q^{-39} -318 q^{-40} -338 q^{-41} -45 q^{-42} +336 q^{-43} +505 q^{-44} +313 q^{-45} -272 q^{-46} -682 q^{-47} -541 q^{-48} +13 q^{-49} +648 q^{-50} +884 q^{-51} +332 q^{-52} -515 q^{-53} -962 q^{-54} -759 q^{-55} +44 q^{-56} +967 q^{-57} +1110 q^{-58} +444 q^{-59} -541 q^{-60} -1290 q^{-61} -1129 q^{-62} +5 q^{-63} +1184 q^{-64} +1603 q^{-65} +881 q^{-66} -792 q^{-67} -2058 q^{-68} -1669 q^{-69} +111 q^{-70} +2105 q^{-71} +2624 q^{-72} +735 q^{-73} -2083 q^{-74} -3268 q^{-75} -1679 q^{-76} +1673 q^{-77} +3936 q^{-78} +2621 q^{-79} -1305 q^{-80} -4281 q^{-81} -3476 q^{-82} +726 q^{-83} +4614 q^{-84} +4245 q^{-85} -263 q^{-86} -4766 q^{-87} -4888 q^{-88} -246 q^{-89} +4898 q^{-90} +5453 q^{-91} +696 q^{-92} -4953 q^{-93} -5942 q^{-94} -1145 q^{-95} +4912 q^{-96} +6344 q^{-97} +1666 q^{-98} -4761 q^{-99} -6647 q^{-100} -2184 q^{-101} +4356 q^{-102} +6783 q^{-103} +2788 q^{-104} -3794 q^{-105} -6656 q^{-106} -3288 q^{-107} +2924 q^{-108} +6252 q^{-109} +3736 q^{-110} -2038 q^{-111} -5513 q^{-112} -3845 q^{-113} +993 q^{-114} +4554 q^{-115} +3790 q^{-116} -202 q^{-117} -3461 q^{-118} -3336 q^{-119} -493 q^{-120} +2381 q^{-121} +2807 q^{-122} +813 q^{-123} -1446 q^{-124} -2102 q^{-125} -967 q^{-126} +736 q^{-127} +1485 q^{-128} +874 q^{-129} -256 q^{-130} -919 q^{-131} -739 q^{-132} -3 q^{-133} +535 q^{-134} +512 q^{-135} +127 q^{-136} -245 q^{-137} -353 q^{-138} -151 q^{-139} +105 q^{-140} +196 q^{-141} +124 q^{-142} -12 q^{-143} -100 q^{-144} -95 q^{-145} -17 q^{-146} +51 q^{-147} +50 q^{-148} +18 q^{-149} -6 q^{-150} -30 q^{-151} -24 q^{-152} +9 q^{-153} +13 q^{-154} +2 q^{-155} +9 q^{-156} -4 q^{-157} -10 q^{-158} + q^{-159} +3 q^{-160} -2 q^{-161} +3 q^{-162} + q^{-163} -3 q^{-164} + q^{-165} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-18} -2 q^{-19} + q^{-20} +3 q^{-21} -2 q^{-22} -2 q^{-23} -3 q^{-24} +7 q^{-25} -4 q^{-26} + q^{-27} +18 q^{-28} -6 q^{-29} -14 q^{-30} -26 q^{-31} +11 q^{-32} -3 q^{-33} +16 q^{-34} +80 q^{-35} +18 q^{-36} -35 q^{-37} -124 q^{-38} -53 q^{-39} -70 q^{-40} +31 q^{-41} +273 q^{-42} +215 q^{-43} +92 q^{-44} -255 q^{-45} -282 q^{-46} -451 q^{-47} -242 q^{-48} +426 q^{-49} +679 q^{-50} +722 q^{-51} +56 q^{-52} -289 q^{-53} -1139 q^{-54} -1213 q^{-55} -192 q^{-56} +726 q^{-57} +1596 q^{-58} +1172 q^{-59} +883 q^{-60} -1033 q^{-61} -2196 q^{-62} -1764 q^{-63} -709 q^{-64} +1146 q^{-65} +1823 q^{-66} +2971 q^{-67} +931 q^{-68} -1169 q^{-69} -2337 q^{-70} -2724 q^{-71} -1479 q^{-72} -319 q^{-73} +3247 q^{-74} +3080 q^{-75} +2287 q^{-76} +569 q^{-77} -1923 q^{-78} -3765 q^{-79} -5031 q^{-80} -741 q^{-81} +1534 q^{-82} +4841 q^{-83} +6038 q^{-84} +3853 q^{-85} -1567 q^{-86} -8292 q^{-87} -7378 q^{-88} -5412 q^{-89} +2308 q^{-90} +9640 q^{-91} +12321 q^{-92} +6273 q^{-93} -6117 q^{-94} -12041 q^{-95} -14969 q^{-96} -5916 q^{-97} +7818 q^{-98} +18862 q^{-99} +16640 q^{-100} +1555 q^{-101} -11654 q^{-102} -22733 q^{-103} -16559 q^{-104} +992 q^{-105} +20875 q^{-106} +25452 q^{-107} +11417 q^{-108} -6958 q^{-109} -26535 q^{-110} -25864 q^{-111} -7635 q^{-112} +19197 q^{-113} +30886 q^{-114} +20112 q^{-115} -894 q^{-116} -27214 q^{-117} -32251 q^{-118} -15125 q^{-119} +16299 q^{-120} +33658 q^{-121} +26376 q^{-122} +4206 q^{-123} -26760 q^{-124} -36359 q^{-125} -20636 q^{-126} +13767 q^{-127} +35282 q^{-128} +30977 q^{-129} +8172 q^{-130} -26057 q^{-131} -39398 q^{-132} -25252 q^{-133} +10985 q^{-134} +35995 q^{-135} +35014 q^{-136} +12603 q^{-137} -23783 q^{-138} -41087 q^{-139} -30043 q^{-140} +5916 q^{-141} +33877 q^{-142} +37709 q^{-143} +18451 q^{-144} -17672 q^{-145} -38986 q^{-146} -33663 q^{-147} -1981 q^{-148} +26646 q^{-149} +36104 q^{-150} +23614 q^{-151} -7840 q^{-152} -30942 q^{-153} -32690 q^{-154} -9664 q^{-155} +15236 q^{-156} +28304 q^{-157} +24224 q^{-158} +1736 q^{-159} -18758 q^{-160} -25605 q^{-161} -12863 q^{-162} +4383 q^{-163} +16862 q^{-164} +19110 q^{-165} +6667 q^{-166} -7621 q^{-167} -15495 q^{-168} -10696 q^{-169} -1703 q^{-170} +6957 q^{-171} +11498 q^{-172} +6459 q^{-173} -1231 q^{-174} -7100 q^{-175} -6233 q^{-176} -2976 q^{-177} +1467 q^{-178} +5371 q^{-179} +4009 q^{-180} +812 q^{-181} -2451 q^{-182} -2655 q^{-183} -2075 q^{-184} -390 q^{-185} +2030 q^{-186} +1869 q^{-187} +854 q^{-188} -626 q^{-189} -813 q^{-190} -1033 q^{-191} -604 q^{-192} +648 q^{-193} +695 q^{-194} +490 q^{-195} -95 q^{-196} -125 q^{-197} -408 q^{-198} -396 q^{-199} +171 q^{-200} +195 q^{-201} +211 q^{-202} +6 q^{-203} +49 q^{-204} -122 q^{-205} -184 q^{-206} +37 q^{-207} +30 q^{-208} +68 q^{-209} +2 q^{-210} +48 q^{-211} -24 q^{-212} -62 q^{-213} +10 q^{-214} -3 q^{-215} +17 q^{-216} -5 q^{-217} +19 q^{-218} -2 q^{-219} -16 q^{-220} +5 q^{-221} -3 q^{-222} +3 q^{-223} -2 q^{-224} +3 q^{-225} + q^{-226} -3 q^{-227} + q^{-228} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 49]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[15, 20, 16, 1],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 49]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[15, 20, 16, 1],
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11],
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11],
X[19, 12, 20, 13], X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
X[19, 12, 20, 13], X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 49]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 7, -6, 8, -9, 3, -4, 5, -7,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 49]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 7, -6, 8, -9, 3, -4, 5, -7,
6, -8, 4]</nowiki></pre></td></tr>
6, -8, 4]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 49]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 2, 16, 18, 6, 20, 10, 12]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 49]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 49]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -1, 2, -1, -3, -2, -2, -2, -3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 2, 16, 18, 6, 20, 10, 12]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 49]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 49]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -1, 2, -1, -3, -2, -2, -2, -3}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 49]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_49_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 49]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 49]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 8 12 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 49]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 49]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_49_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 49]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 49]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 8 12 2 3
-13 + -- - -- + -- + 12 t - 8 t + 3 t
-13 + -- - -- + -- + 12 t - 8 t + 3 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 49]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 7 z + 10 z + 3 z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 49]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 49]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 7 z + 10 z + 3 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 49]], KnotSignature[Knot[10, 49]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{59, -6}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 49]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 3 5 8 9 10 9 6 5 2 -3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 49]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 49]], KnotSignature[Knot[10, 49]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{59, -6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 49]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -13 3 5 8 9 10 9 6 5 2 -3
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
12 11 10 9 8 7 6 5 4
12 11 10 9 8 7 6 5 4
q q q q q q q q q</nowiki></pre></td></tr>
q q q q q q q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 49]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 49]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -40 -38 -36 3 2 -28 2 3 3 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 49]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 49]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -40 -38 -36 3 2 -28 2 3 3 2 2
q + q - q - --- - --- - q - --- + --- + --- + --- + --- -
q + q - q - --- - --- - q - --- + --- + --- + --- + --- -
32 30 26 24 20 18 14
32 30 26 24 20 18 14
Line 146: Line 180:
-12 -10
-12 -10
q + q</nowiki></pre></td></tr>
q + q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 49]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 6 2 8 2 10 2 12 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 49]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 12 6 2 8 2 10 2 12 2
a + 5 a - 7 a + 2 a + 4 a z + 12 a z - 10 a z + a z +
a + 5 a - 7 a + 2 a + 4 a z + 12 a z - 10 a z + a z +
6 4 8 4 10 4 6 6 8 6
6 4 8 4 10 4 6 6 8 6
4 a z + 9 a z - 3 a z + a z + 2 a z</nowiki></pre></td></tr>
4 a z + 9 a z - 3 a z + a z + 2 a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 49]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 9 11 15 6 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 49]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 12 9 11 15 6 2
-a + 5 a + 7 a + 2 a - 9 a z - 10 a z + a z + 4 a z -
-a + 5 a + 7 a + 2 a - 9 a z - 10 a z + a z + 4 a z -
Line 175: Line 217:
10 8 12 8 9 9 11 9
10 8 12 8 9 9 11 9
6 a z + 3 a z + a z + a z</nowiki></pre></td></tr>
6 a z + 3 a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 49]], Vassiliev[3][Knot[10, 49]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -16}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 49]], Vassiliev[3][Knot[10, 49]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 49]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 2 1 3 2 5
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, -16}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 49]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 2 1 3 2 5
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
27 10 25 9 23 9 23 8 21 8 21 7
27 10 25 9 23 9 23 8 21 8 21 7
Line 194: Line 244:
------ + ------ + ------ + ----- + ----
------ + ------ + ------ + ----- + ----
13 3 11 3 11 2 9 2 7
13 3 11 3 11 2 9 2 7
q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 49], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -36 3 -34 7 13 4 20 32 7 41 56
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 49], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -36 3 -34 7 13 4 20 32 7 41 56
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
35 33 32 31 30 29 28 27 26
35 33 32 31 30 29 28 27 26
Line 210: Line 264:
--- - --- + --- - --- - --- + -- + q - -- + q
--- - --- + --- - --- - --- + -- + q - -- + q
14 13 12 11 10 9 7
14 13 12 11 10 9 7
q q q q q q q</nowiki></pre></td></tr>
q q q q q q q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 16:59, 1 September 2005

10 48.gif

10_48

10 50.gif

10_50

10 49.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 49's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 49 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X7283
Gauss code -1, 10, -2, 1, -3, 9, -10, 2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4
Dowker-Thistlethwaite code 4 8 14 2 16 18 6 20 10 12
Conway Notation [41,21,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

10 49 ML.gif 10 49 AP.gif
[{13, 3}, {2, 11}, {9, 12}, {11, 13}, {10, 4}, {3, 9}, {4, 1}, {5, 10}, {6, 2}, {7, 5}, {8, 6}, {12, 7}, {1, 8}]

[edit Notes on presentations of 10 49]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-17][5]
Hyperbolic Volume 11.4532
A-Polynomial See Data:10 49/A-polynomial

[edit Notes for 10 49's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 10 49's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 59, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (7, -16)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 49. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-5          11
-7         21-1
-9        3  3
-11       32  -1
-13      63   3
-15     43    -1
-17    56     -1
-19   34      1
-21  25       -3
-23 13        2
-25 2         -2
-271          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials