9 17: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 17 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,9,-8,3,-4,2,-6,5,-7,8,-9,7/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=17|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,9,-8,3,-4,2,-6,5,-7,8,-9,7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 9 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 71: | Line 39: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{10}-2 q^9-q^8+7 q^7-5 q^6-8 q^5+17 q^4-5 q^3-20 q^2+26 q+1-32 q^{-1} +30 q^{-2} +8 q^{-3} -39 q^{-4} +28 q^{-5} +13 q^{-6} -37 q^{-7} +20 q^{-8} +12 q^{-9} -25 q^{-10} +12 q^{-11} +6 q^{-12} -11 q^{-13} +6 q^{-14} + q^{-15} -3 q^{-16} + q^{-17} </math> | |
|||
coloured_jones_3 = <math>q^{21}-2 q^{20}-q^{19}+2 q^{18}+6 q^{17}-4 q^{16}-11 q^{15}+q^{14}+20 q^{13}+3 q^{12}-25 q^{11}-16 q^{10}+34 q^9+25 q^8-31 q^7-43 q^6+30 q^5+55 q^4-19 q^3-70 q^2+11 q+76+5 q^{-1} -83 q^{-2} -19 q^{-3} +86 q^{-4} +32 q^{-5} -84 q^{-6} -47 q^{-7} +83 q^{-8} +55 q^{-9} -73 q^{-10} -65 q^{-11} +66 q^{-12} +66 q^{-13} -55 q^{-14} -59 q^{-15} +40 q^{-16} +52 q^{-17} -33 q^{-18} -35 q^{-19} +20 q^{-20} +26 q^{-21} -19 q^{-22} -10 q^{-23} +10 q^{-24} +7 q^{-25} -10 q^{-26} +6 q^{-28} - q^{-29} -3 q^{-30} - q^{-31} +3 q^{-32} - q^{-33} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{10}-2 q^9-q^8+7 q^7-5 q^6-8 q^5+17 q^4-5 q^3-20 q^2+26 q+1-32 q^{-1} +30 q^{-2} +8 q^{-3} -39 q^{-4} +28 q^{-5} +13 q^{-6} -37 q^{-7} +20 q^{-8} +12 q^{-9} -25 q^{-10} +12 q^{-11} +6 q^{-12} -11 q^{-13} +6 q^{-14} + q^{-15} -3 q^{-16} + q^{-17} </math>|J3=<math>q^{21}-2 q^{20}-q^{19}+2 q^{18}+6 q^{17}-4 q^{16}-11 q^{15}+q^{14}+20 q^{13}+3 q^{12}-25 q^{11}-16 q^{10}+34 q^9+25 q^8-31 q^7-43 q^6+30 q^5+55 q^4-19 q^3-70 q^2+11 q+76+5 q^{-1} -83 q^{-2} -19 q^{-3} +86 q^{-4} +32 q^{-5} -84 q^{-6} -47 q^{-7} +83 q^{-8} +55 q^{-9} -73 q^{-10} -65 q^{-11} +66 q^{-12} +66 q^{-13} -55 q^{-14} -59 q^{-15} +40 q^{-16} +52 q^{-17} -33 q^{-18} -35 q^{-19} +20 q^{-20} +26 q^{-21} -19 q^{-22} -10 q^{-23} +10 q^{-24} +7 q^{-25} -10 q^{-26} +6 q^{-28} - q^{-29} -3 q^{-30} - q^{-31} +3 q^{-32} - q^{-33} </math>|J4=<math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+7 q^{31}-8 q^{30}-9 q^{29}+2 q^{27}+32 q^{26}-7 q^{25}-23 q^{24}-20 q^{23}-19 q^{22}+70 q^{21}+19 q^{20}-12 q^{19}-46 q^{18}-83 q^{17}+84 q^{16}+50 q^{15}+45 q^{14}-32 q^{13}-163 q^{12}+48 q^{11}+38 q^{10}+122 q^9+40 q^8-208 q^7-10 q^6-35 q^5+168 q^4+143 q^3-190 q^2-52 q-147+168 q^{-1} +239 q^{-2} -131 q^{-3} -65 q^{-4} -262 q^{-5} +134 q^{-6} +312 q^{-7} -53 q^{-8} -60 q^{-9} -362 q^{-10} +83 q^{-11} +362 q^{-12} +30 q^{-13} -43 q^{-14} -431 q^{-15} +18 q^{-16} +370 q^{-17} +105 q^{-18} -5 q^{-19} -437 q^{-20} -47 q^{-21} +309 q^{-22} +136 q^{-23} +53 q^{-24} -358 q^{-25} -84 q^{-26} +198 q^{-27} +105 q^{-28} +89 q^{-29} -228 q^{-30} -68 q^{-31} +96 q^{-32} +37 q^{-33} +83 q^{-34} -109 q^{-35} -31 q^{-36} +37 q^{-37} -10 q^{-38} +53 q^{-39} -40 q^{-40} -4 q^{-41} +13 q^{-42} -21 q^{-43} +24 q^{-44} -11 q^{-45} +4 q^{-46} +4 q^{-47} -12 q^{-48} +6 q^{-49} -2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math>|J5=<math>q^{55}-2 q^{54}-q^{53}+2 q^{52}+q^{51}+2 q^{50}+3 q^{49}-6 q^{48}-11 q^{47}+6 q^{45}+13 q^{44}+19 q^{43}-3 q^{42}-30 q^{41}-31 q^{40}-9 q^{39}+23 q^{38}+59 q^{37}+43 q^{36}-19 q^{35}-70 q^{34}-80 q^{33}-25 q^{32}+72 q^{31}+119 q^{30}+74 q^{29}-28 q^{28}-136 q^{27}-151 q^{26}-25 q^{25}+112 q^{24}+185 q^{23}+137 q^{22}-47 q^{21}-216 q^{20}-213 q^{19}-58 q^{18}+153 q^{17}+300 q^{16}+200 q^{15}-82 q^{14}-307 q^{13}-329 q^{12}-82 q^{11}+287 q^{10}+449 q^9+239 q^8-188 q^7-519 q^6-437 q^5+65 q^4+554 q^3+594 q^2+112 q-540-758 q^{-1} -284 q^{-2} +501 q^{-3} +874 q^{-4} +467 q^{-5} -428 q^{-6} -987 q^{-7} -641 q^{-8} +359 q^{-9} +1077 q^{-10} +796 q^{-11} -279 q^{-12} -1144 q^{-13} -960 q^{-14} +199 q^{-15} +1228 q^{-16} +1089 q^{-17} -120 q^{-18} -1262 q^{-19} -1235 q^{-20} +19 q^{-21} +1304 q^{-22} +1344 q^{-23} +81 q^{-24} -1274 q^{-25} -1431 q^{-26} -217 q^{-27} +1212 q^{-28} +1472 q^{-29} +341 q^{-30} -1086 q^{-31} -1439 q^{-32} -457 q^{-33} +898 q^{-34} +1357 q^{-35} +538 q^{-36} -712 q^{-37} -1185 q^{-38} -558 q^{-39} +488 q^{-40} +994 q^{-41} +540 q^{-42} -335 q^{-43} -752 q^{-44} -467 q^{-45} +172 q^{-46} +568 q^{-47} +372 q^{-48} -104 q^{-49} -365 q^{-50} -271 q^{-51} +18 q^{-52} +253 q^{-53} +190 q^{-54} -19 q^{-55} -134 q^{-56} -114 q^{-57} -17 q^{-58} +81 q^{-59} +75 q^{-60} +6 q^{-61} -38 q^{-62} -36 q^{-63} -10 q^{-64} +13 q^{-65} +19 q^{-66} +12 q^{-67} -7 q^{-68} -11 q^{-69} + q^{-70} -6 q^{-71} +2 q^{-72} +8 q^{-73} -3 q^{-75} +2 q^{-76} -3 q^{-77} - q^{-78} +3 q^{-79} - q^{-80} </math>|J6=<math>q^{78}-2 q^{77}-q^{76}+2 q^{75}+q^{74}+2 q^{73}-2 q^{72}+5 q^{71}-8 q^{70}-11 q^{69}+3 q^{68}+5 q^{67}+14 q^{66}+3 q^{65}+24 q^{64}-17 q^{63}-39 q^{62}-22 q^{61}-11 q^{60}+25 q^{59}+19 q^{58}+100 q^{57}+17 q^{56}-49 q^{55}-73 q^{54}-90 q^{53}-39 q^{52}-31 q^{51}+197 q^{50}+133 q^{49}+68 q^{48}-29 q^{47}-136 q^{46}-190 q^{45}-267 q^{44}+131 q^{43}+158 q^{42}+264 q^{41}+216 q^{40}+93 q^{39}-162 q^{38}-544 q^{37}-172 q^{36}-175 q^{35}+177 q^{34}+397 q^{33}+591 q^{32}+315 q^{31}-406 q^{30}-331 q^{29}-750 q^{28}-436 q^{27}+5 q^{26}+852 q^{25}+1007 q^{24}+335 q^{23}+181 q^{22}-959 q^{21}-1230 q^{20}-1058 q^{19}+349 q^{18}+1248 q^{17}+1241 q^{16}+1369 q^{15}-319 q^{14}-1523 q^{13}-2269 q^{12}-848 q^{11}+615 q^{10}+1642 q^9+2680 q^8+1030 q^7-965 q^6-2990 q^5-2193 q^4-702 q^3+1264 q^2+3551 q+2555+213 q^{-1} -3010 q^{-2} -3198 q^{-3} -2203 q^{-4} +349 q^{-5} +3838 q^{-6} +3830 q^{-7} +1550 q^{-8} -2571 q^{-9} -3766 q^{-10} -3511 q^{-11} -685 q^{-12} +3770 q^{-13} +4771 q^{-14} +2724 q^{-15} -2030 q^{-16} -4101 q^{-17} -4553 q^{-18} -1573 q^{-19} +3631 q^{-20} +5526 q^{-21} +3697 q^{-22} -1559 q^{-23} -4399 q^{-24} -5450 q^{-25} -2336 q^{-26} +3485 q^{-27} +6189 q^{-28} +4596 q^{-29} -1024 q^{-30} -4589 q^{-31} -6235 q^{-32} -3156 q^{-33} +3069 q^{-34} +6557 q^{-35} +5428 q^{-36} -169 q^{-37} -4292 q^{-38} -6629 q^{-39} -4019 q^{-40} +2108 q^{-41} +6172 q^{-42} +5837 q^{-43} +941 q^{-44} -3233 q^{-45} -6149 q^{-46} -4501 q^{-47} +771 q^{-48} +4842 q^{-49} +5341 q^{-50} +1762 q^{-51} -1720 q^{-52} -4702 q^{-53} -4120 q^{-54} -303 q^{-55} +3028 q^{-56} +3959 q^{-57} +1809 q^{-58} -469 q^{-59} -2869 q^{-60} -2983 q^{-61} -661 q^{-62} +1502 q^{-63} +2333 q^{-64} +1232 q^{-65} +114 q^{-66} -1398 q^{-67} -1719 q^{-68} -483 q^{-69} +630 q^{-70} +1112 q^{-71} +573 q^{-72} +203 q^{-73} -565 q^{-74} -825 q^{-75} -202 q^{-76} +246 q^{-77} +452 q^{-78} +175 q^{-79} +132 q^{-80} -194 q^{-81} -356 q^{-82} -42 q^{-83} +91 q^{-84} +162 q^{-85} +25 q^{-86} +70 q^{-87} -55 q^{-88} -141 q^{-89} +4 q^{-90} +24 q^{-91} +52 q^{-92} -9 q^{-93} +37 q^{-94} -11 q^{-95} -49 q^{-96} +7 q^{-97} +15 q^{-99} -8 q^{-100} +16 q^{-101} -14 q^{-103} +4 q^{-104} -3 q^{-105} +3 q^{-106} -2 q^{-107} +3 q^{-108} + q^{-109} -3 q^{-110} + q^{-111} </math>|J7=<math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+3 q^{97}-8 q^{96}-8 q^{95}+2 q^{94}+5 q^{93}+16 q^{92}+5 q^{91}+q^{90}+13 q^{89}-23 q^{88}-34 q^{87}-25 q^{86}-13 q^{85}+38 q^{84}+38 q^{83}+37 q^{82}+70 q^{81}-2 q^{80}-59 q^{79}-93 q^{78}-132 q^{77}-23 q^{76}+24 q^{75}+75 q^{74}+209 q^{73}+150 q^{72}+74 q^{71}-50 q^{70}-267 q^{69}-229 q^{68}-208 q^{67}-133 q^{66}+198 q^{65}+294 q^{64}+399 q^{63}+367 q^{62}-25 q^{61}-184 q^{60}-453 q^{59}-643 q^{58}-324 q^{57}-123 q^{56}+322 q^{55}+799 q^{54}+676 q^{53}+635 q^{52}+114 q^{51}-670 q^{50}-874 q^{49}-1205 q^{48}-849 q^{47}+115 q^{46}+738 q^{45}+1635 q^{44}+1699 q^{43}+788 q^{42}-41 q^{41}-1577 q^{40}-2446 q^{39}-2017 q^{38}-1187 q^{37}+992 q^{36}+2731 q^{35}+3090 q^{34}+2807 q^{33}+427 q^{32}-2300 q^{31}-3897 q^{30}-4558 q^{29}-2308 q^{28}+1094 q^{27}+3862 q^{26}+5999 q^{25}+4607 q^{24}+949 q^{23}-3046 q^{22}-6888 q^{21}-6771 q^{20}-3467 q^{19}+1263 q^{18}+6854 q^{17}+8590 q^{16}+6257 q^{15}+1220 q^{14}-5947 q^{13}-9686 q^{12}-8868 q^{11}-4215 q^{10}+4155 q^9+9981 q^8+11106 q^7+7335 q^6-1728 q^5-9431 q^4-12709 q^3-10385 q^2-1134 q+8236+13694 q^{-1} +13062 q^{-2} +4086 q^{-3} -6474 q^{-4} -14025 q^{-5} -15370 q^{-6} -7019 q^{-7} +4495 q^{-8} +13940 q^{-9} +17159 q^{-10} +9672 q^{-11} -2401 q^{-12} -13477 q^{-13} -18579 q^{-14} -12072 q^{-15} +411 q^{-16} +12923 q^{-17} +19706 q^{-18} +14102 q^{-19} +1349 q^{-20} -12339 q^{-21} -20591 q^{-22} -15887 q^{-23} -2930 q^{-24} +11890 q^{-25} +21484 q^{-26} +17463 q^{-27} +4192 q^{-28} -11593 q^{-29} -22293 q^{-30} -18922 q^{-31} -5408 q^{-32} +11376 q^{-33} +23229 q^{-34} +20426 q^{-35} +6522 q^{-36} -11219 q^{-37} -24079 q^{-38} -21880 q^{-39} -7831 q^{-40} +10781 q^{-41} +24815 q^{-42} +23452 q^{-43} +9340 q^{-44} -10065 q^{-45} -25156 q^{-46} -24782 q^{-47} -11094 q^{-48} +8682 q^{-49} +24854 q^{-50} +25852 q^{-51} +13009 q^{-52} -6760 q^{-53} -23769 q^{-54} -26211 q^{-55} -14777 q^{-56} +4299 q^{-57} +21694 q^{-58} +25700 q^{-59} +16178 q^{-60} -1574 q^{-61} -18846 q^{-62} -24203 q^{-63} -16777 q^{-64} -1005 q^{-65} +15380 q^{-66} +21658 q^{-67} +16509 q^{-68} +3183 q^{-69} -11778 q^{-70} -18449 q^{-71} -15254 q^{-72} -4551 q^{-73} +8329 q^{-74} +14823 q^{-75} +13296 q^{-76} +5144 q^{-77} -5491 q^{-78} -11273 q^{-79} -10798 q^{-80} -4997 q^{-81} +3279 q^{-82} +8091 q^{-83} +8324 q^{-84} +4310 q^{-85} -1887 q^{-86} -5491 q^{-87} -5933 q^{-88} -3371 q^{-89} +951 q^{-90} +3542 q^{-91} +4074 q^{-92} +2435 q^{-93} -581 q^{-94} -2220 q^{-95} -2544 q^{-96} -1575 q^{-97} +327 q^{-98} +1291 q^{-99} +1583 q^{-100} +1000 q^{-101} -301 q^{-102} -792 q^{-103} -889 q^{-104} -524 q^{-105} +235 q^{-106} +425 q^{-107} +497 q^{-108} +306 q^{-109} -207 q^{-110} -261 q^{-111} -272 q^{-112} -143 q^{-113} +180 q^{-114} +139 q^{-115} +130 q^{-116} +69 q^{-117} -116 q^{-118} -66 q^{-119} -85 q^{-120} -51 q^{-121} +99 q^{-122} +49 q^{-123} +28 q^{-124} +13 q^{-125} -46 q^{-126} -8 q^{-127} -26 q^{-128} -27 q^{-129} +41 q^{-130} +13 q^{-131} +5 q^{-132} +5 q^{-133} -14 q^{-134} +4 q^{-135} -9 q^{-136} -10 q^{-137} +12 q^{-138} +2 q^{-139} - q^{-140} +3 q^{-141} -3 q^{-142} +2 q^{-143} -3 q^{-144} - q^{-145} +3 q^{-146} - q^{-147} </math>}} |
|||
coloured_jones_4 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+7 q^{31}-8 q^{30}-9 q^{29}+2 q^{27}+32 q^{26}-7 q^{25}-23 q^{24}-20 q^{23}-19 q^{22}+70 q^{21}+19 q^{20}-12 q^{19}-46 q^{18}-83 q^{17}+84 q^{16}+50 q^{15}+45 q^{14}-32 q^{13}-163 q^{12}+48 q^{11}+38 q^{10}+122 q^9+40 q^8-208 q^7-10 q^6-35 q^5+168 q^4+143 q^3-190 q^2-52 q-147+168 q^{-1} +239 q^{-2} -131 q^{-3} -65 q^{-4} -262 q^{-5} +134 q^{-6} +312 q^{-7} -53 q^{-8} -60 q^{-9} -362 q^{-10} +83 q^{-11} +362 q^{-12} +30 q^{-13} -43 q^{-14} -431 q^{-15} +18 q^{-16} +370 q^{-17} +105 q^{-18} -5 q^{-19} -437 q^{-20} -47 q^{-21} +309 q^{-22} +136 q^{-23} +53 q^{-24} -358 q^{-25} -84 q^{-26} +198 q^{-27} +105 q^{-28} +89 q^{-29} -228 q^{-30} -68 q^{-31} +96 q^{-32} +37 q^{-33} +83 q^{-34} -109 q^{-35} -31 q^{-36} +37 q^{-37} -10 q^{-38} +53 q^{-39} -40 q^{-40} -4 q^{-41} +13 q^{-42} -21 q^{-43} +24 q^{-44} -11 q^{-45} +4 q^{-46} +4 q^{-47} -12 q^{-48} +6 q^{-49} -2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math> | |
|||
coloured_jones_5 = <math>q^{55}-2 q^{54}-q^{53}+2 q^{52}+q^{51}+2 q^{50}+3 q^{49}-6 q^{48}-11 q^{47}+6 q^{45}+13 q^{44}+19 q^{43}-3 q^{42}-30 q^{41}-31 q^{40}-9 q^{39}+23 q^{38}+59 q^{37}+43 q^{36}-19 q^{35}-70 q^{34}-80 q^{33}-25 q^{32}+72 q^{31}+119 q^{30}+74 q^{29}-28 q^{28}-136 q^{27}-151 q^{26}-25 q^{25}+112 q^{24}+185 q^{23}+137 q^{22}-47 q^{21}-216 q^{20}-213 q^{19}-58 q^{18}+153 q^{17}+300 q^{16}+200 q^{15}-82 q^{14}-307 q^{13}-329 q^{12}-82 q^{11}+287 q^{10}+449 q^9+239 q^8-188 q^7-519 q^6-437 q^5+65 q^4+554 q^3+594 q^2+112 q-540-758 q^{-1} -284 q^{-2} +501 q^{-3} +874 q^{-4} +467 q^{-5} -428 q^{-6} -987 q^{-7} -641 q^{-8} +359 q^{-9} +1077 q^{-10} +796 q^{-11} -279 q^{-12} -1144 q^{-13} -960 q^{-14} +199 q^{-15} +1228 q^{-16} +1089 q^{-17} -120 q^{-18} -1262 q^{-19} -1235 q^{-20} +19 q^{-21} +1304 q^{-22} +1344 q^{-23} +81 q^{-24} -1274 q^{-25} -1431 q^{-26} -217 q^{-27} +1212 q^{-28} +1472 q^{-29} +341 q^{-30} -1086 q^{-31} -1439 q^{-32} -457 q^{-33} +898 q^{-34} +1357 q^{-35} +538 q^{-36} -712 q^{-37} -1185 q^{-38} -558 q^{-39} +488 q^{-40} +994 q^{-41} +540 q^{-42} -335 q^{-43} -752 q^{-44} -467 q^{-45} +172 q^{-46} +568 q^{-47} +372 q^{-48} -104 q^{-49} -365 q^{-50} -271 q^{-51} +18 q^{-52} +253 q^{-53} +190 q^{-54} -19 q^{-55} -134 q^{-56} -114 q^{-57} -17 q^{-58} +81 q^{-59} +75 q^{-60} +6 q^{-61} -38 q^{-62} -36 q^{-63} -10 q^{-64} +13 q^{-65} +19 q^{-66} +12 q^{-67} -7 q^{-68} -11 q^{-69} + q^{-70} -6 q^{-71} +2 q^{-72} +8 q^{-73} -3 q^{-75} +2 q^{-76} -3 q^{-77} - q^{-78} +3 q^{-79} - q^{-80} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{78}-2 q^{77}-q^{76}+2 q^{75}+q^{74}+2 q^{73}-2 q^{72}+5 q^{71}-8 q^{70}-11 q^{69}+3 q^{68}+5 q^{67}+14 q^{66}+3 q^{65}+24 q^{64}-17 q^{63}-39 q^{62}-22 q^{61}-11 q^{60}+25 q^{59}+19 q^{58}+100 q^{57}+17 q^{56}-49 q^{55}-73 q^{54}-90 q^{53}-39 q^{52}-31 q^{51}+197 q^{50}+133 q^{49}+68 q^{48}-29 q^{47}-136 q^{46}-190 q^{45}-267 q^{44}+131 q^{43}+158 q^{42}+264 q^{41}+216 q^{40}+93 q^{39}-162 q^{38}-544 q^{37}-172 q^{36}-175 q^{35}+177 q^{34}+397 q^{33}+591 q^{32}+315 q^{31}-406 q^{30}-331 q^{29}-750 q^{28}-436 q^{27}+5 q^{26}+852 q^{25}+1007 q^{24}+335 q^{23}+181 q^{22}-959 q^{21}-1230 q^{20}-1058 q^{19}+349 q^{18}+1248 q^{17}+1241 q^{16}+1369 q^{15}-319 q^{14}-1523 q^{13}-2269 q^{12}-848 q^{11}+615 q^{10}+1642 q^9+2680 q^8+1030 q^7-965 q^6-2990 q^5-2193 q^4-702 q^3+1264 q^2+3551 q+2555+213 q^{-1} -3010 q^{-2} -3198 q^{-3} -2203 q^{-4} +349 q^{-5} +3838 q^{-6} +3830 q^{-7} +1550 q^{-8} -2571 q^{-9} -3766 q^{-10} -3511 q^{-11} -685 q^{-12} +3770 q^{-13} +4771 q^{-14} +2724 q^{-15} -2030 q^{-16} -4101 q^{-17} -4553 q^{-18} -1573 q^{-19} +3631 q^{-20} +5526 q^{-21} +3697 q^{-22} -1559 q^{-23} -4399 q^{-24} -5450 q^{-25} -2336 q^{-26} +3485 q^{-27} +6189 q^{-28} +4596 q^{-29} -1024 q^{-30} -4589 q^{-31} -6235 q^{-32} -3156 q^{-33} +3069 q^{-34} +6557 q^{-35} +5428 q^{-36} -169 q^{-37} -4292 q^{-38} -6629 q^{-39} -4019 q^{-40} +2108 q^{-41} +6172 q^{-42} +5837 q^{-43} +941 q^{-44} -3233 q^{-45} -6149 q^{-46} -4501 q^{-47} +771 q^{-48} +4842 q^{-49} +5341 q^{-50} +1762 q^{-51} -1720 q^{-52} -4702 q^{-53} -4120 q^{-54} -303 q^{-55} +3028 q^{-56} +3959 q^{-57} +1809 q^{-58} -469 q^{-59} -2869 q^{-60} -2983 q^{-61} -661 q^{-62} +1502 q^{-63} +2333 q^{-64} +1232 q^{-65} +114 q^{-66} -1398 q^{-67} -1719 q^{-68} -483 q^{-69} +630 q^{-70} +1112 q^{-71} +573 q^{-72} +203 q^{-73} -565 q^{-74} -825 q^{-75} -202 q^{-76} +246 q^{-77} +452 q^{-78} +175 q^{-79} +132 q^{-80} -194 q^{-81} -356 q^{-82} -42 q^{-83} +91 q^{-84} +162 q^{-85} +25 q^{-86} +70 q^{-87} -55 q^{-88} -141 q^{-89} +4 q^{-90} +24 q^{-91} +52 q^{-92} -9 q^{-93} +37 q^{-94} -11 q^{-95} -49 q^{-96} +7 q^{-97} +15 q^{-99} -8 q^{-100} +16 q^{-101} -14 q^{-103} +4 q^{-104} -3 q^{-105} +3 q^{-106} -2 q^{-107} +3 q^{-108} + q^{-109} -3 q^{-110} + q^{-111} </math> | |
|||
coloured_jones_7 = <math>q^{105}-2 q^{104}-q^{103}+2 q^{102}+q^{101}+2 q^{100}-2 q^{99}+3 q^{97}-8 q^{96}-8 q^{95}+2 q^{94}+5 q^{93}+16 q^{92}+5 q^{91}+q^{90}+13 q^{89}-23 q^{88}-34 q^{87}-25 q^{86}-13 q^{85}+38 q^{84}+38 q^{83}+37 q^{82}+70 q^{81}-2 q^{80}-59 q^{79}-93 q^{78}-132 q^{77}-23 q^{76}+24 q^{75}+75 q^{74}+209 q^{73}+150 q^{72}+74 q^{71}-50 q^{70}-267 q^{69}-229 q^{68}-208 q^{67}-133 q^{66}+198 q^{65}+294 q^{64}+399 q^{63}+367 q^{62}-25 q^{61}-184 q^{60}-453 q^{59}-643 q^{58}-324 q^{57}-123 q^{56}+322 q^{55}+799 q^{54}+676 q^{53}+635 q^{52}+114 q^{51}-670 q^{50}-874 q^{49}-1205 q^{48}-849 q^{47}+115 q^{46}+738 q^{45}+1635 q^{44}+1699 q^{43}+788 q^{42}-41 q^{41}-1577 q^{40}-2446 q^{39}-2017 q^{38}-1187 q^{37}+992 q^{36}+2731 q^{35}+3090 q^{34}+2807 q^{33}+427 q^{32}-2300 q^{31}-3897 q^{30}-4558 q^{29}-2308 q^{28}+1094 q^{27}+3862 q^{26}+5999 q^{25}+4607 q^{24}+949 q^{23}-3046 q^{22}-6888 q^{21}-6771 q^{20}-3467 q^{19}+1263 q^{18}+6854 q^{17}+8590 q^{16}+6257 q^{15}+1220 q^{14}-5947 q^{13}-9686 q^{12}-8868 q^{11}-4215 q^{10}+4155 q^9+9981 q^8+11106 q^7+7335 q^6-1728 q^5-9431 q^4-12709 q^3-10385 q^2-1134 q+8236+13694 q^{-1} +13062 q^{-2} +4086 q^{-3} -6474 q^{-4} -14025 q^{-5} -15370 q^{-6} -7019 q^{-7} +4495 q^{-8} +13940 q^{-9} +17159 q^{-10} +9672 q^{-11} -2401 q^{-12} -13477 q^{-13} -18579 q^{-14} -12072 q^{-15} +411 q^{-16} +12923 q^{-17} +19706 q^{-18} +14102 q^{-19} +1349 q^{-20} -12339 q^{-21} -20591 q^{-22} -15887 q^{-23} -2930 q^{-24} +11890 q^{-25} +21484 q^{-26} +17463 q^{-27} +4192 q^{-28} -11593 q^{-29} -22293 q^{-30} -18922 q^{-31} -5408 q^{-32} +11376 q^{-33} +23229 q^{-34} +20426 q^{-35} +6522 q^{-36} -11219 q^{-37} -24079 q^{-38} -21880 q^{-39} -7831 q^{-40} +10781 q^{-41} +24815 q^{-42} +23452 q^{-43} +9340 q^{-44} -10065 q^{-45} -25156 q^{-46} -24782 q^{-47} -11094 q^{-48} +8682 q^{-49} +24854 q^{-50} +25852 q^{-51} +13009 q^{-52} -6760 q^{-53} -23769 q^{-54} -26211 q^{-55} -14777 q^{-56} +4299 q^{-57} +21694 q^{-58} +25700 q^{-59} +16178 q^{-60} -1574 q^{-61} -18846 q^{-62} -24203 q^{-63} -16777 q^{-64} -1005 q^{-65} +15380 q^{-66} +21658 q^{-67} +16509 q^{-68} +3183 q^{-69} -11778 q^{-70} -18449 q^{-71} -15254 q^{-72} -4551 q^{-73} +8329 q^{-74} +14823 q^{-75} +13296 q^{-76} +5144 q^{-77} -5491 q^{-78} -11273 q^{-79} -10798 q^{-80} -4997 q^{-81} +3279 q^{-82} +8091 q^{-83} +8324 q^{-84} +4310 q^{-85} -1887 q^{-86} -5491 q^{-87} -5933 q^{-88} -3371 q^{-89} +951 q^{-90} +3542 q^{-91} +4074 q^{-92} +2435 q^{-93} -581 q^{-94} -2220 q^{-95} -2544 q^{-96} -1575 q^{-97} +327 q^{-98} +1291 q^{-99} +1583 q^{-100} +1000 q^{-101} -301 q^{-102} -792 q^{-103} -889 q^{-104} -524 q^{-105} +235 q^{-106} +425 q^{-107} +497 q^{-108} +306 q^{-109} -207 q^{-110} -261 q^{-111} -272 q^{-112} -143 q^{-113} +180 q^{-114} +139 q^{-115} +130 q^{-116} +69 q^{-117} -116 q^{-118} -66 q^{-119} -85 q^{-120} -51 q^{-121} +99 q^{-122} +49 q^{-123} +28 q^{-124} +13 q^{-125} -46 q^{-126} -8 q^{-127} -26 q^{-128} -27 q^{-129} +41 q^{-130} +13 q^{-131} +5 q^{-132} +5 q^{-133} -14 q^{-134} +4 q^{-135} -9 q^{-136} -10 q^{-137} +12 q^{-138} +2 q^{-139} - q^{-140} +3 q^{-141} -3 q^{-142} +2 q^{-143} -3 q^{-144} - q^{-145} +3 q^{-146} - q^{-147} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 17]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 17]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[7, 14, 8, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16], |
X[7, 14, 8, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16], |
||
X[17, 9, 18, 8]]</nowiki></ |
X[17, 9, 18, 8]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 17]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 17]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 17]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 17]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, 1, -2, -2, -2, 3, -2, 3}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 17]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 6, 18, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 17]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 17]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, -2, 1, -2, -2, -2, 3, -2, 3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 17]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 9 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 17]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 17]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_17_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 17]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, {4, 7}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 17]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 9 2 3 |
|||
-9 + t - -- + - + 9 t - 5 t + t |
-9 + t - -- + - + 9 t - 5 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 17]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 17]][z]</nowiki></code></td></tr> |
|||
1 - 2 z + z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - 2 z + z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 17]], KnotSignature[Knot[9, 17]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{39, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 4 6 7 6 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 17]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 17]], KnotSignature[Knot[9, 17]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{39, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 17]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 3 4 6 7 6 2 3 |
|||
-5 - q + -- - -- + -- - -- + - + 4 q - 2 q + q |
-5 - q + -- - -- + -- - -- + - + 4 q - 2 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 17]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 17]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 17]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 -16 -12 2 -8 -6 2 2 4 8 10 |
|||
-q + q + q + --- - q + q - -- - q + q + q + q |
-q + q + q + --- - q + q - -- - q + q + q + q |
||
10 4 |
10 4 |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 17]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 17]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 2 2 z 2 2 4 2 4 2 4 |
2 2 2 z 2 2 4 2 4 2 4 |
||
-3 + -- + 2 a - 6 z + -- + 5 a z - 2 a z - 2 z + 4 a z - |
-3 + -- + 2 a - 6 z + -- + 5 a z - 2 a z - 2 z + 4 a z - |
||
Line 150: | Line 188: | ||
4 4 2 6 |
4 4 2 6 |
||
a z + a z</nowiki></ |
a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 17]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 17]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 2 z 3 5 2 5 z 2 2 |
2 2 z 3 5 2 5 z 2 2 |
||
-3 - -- - 2 a - - + a z + 3 a z + a z + 13 z + ---- + 9 a z - |
-3 - -- - 2 a - - + a z + 3 a z + a z + 13 z + ---- + 9 a z - |
||
Line 177: | Line 219: | ||
8 2 8 |
8 2 8 |
||
z + a z</nowiki></ |
z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 17]], Vassiliev[3][Knot[9, 17]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 17]], Vassiliev[3][Knot[9, 17]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 17]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 17]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 4 1 2 1 2 2 4 2 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
||
Line 191: | Line 241: | ||
---- + ---- + --- + 2 q t + q t + 3 q t + q t + q t + q t |
---- + ---- + --- + 2 q t + q t + 3 q t + q t + q t + q t |
||
5 3 q |
5 3 q |
||
q t q t</nowiki></ |
q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 17], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 17], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -17 3 -15 6 11 6 12 25 12 20 37 |
|||
1 + q - --- + q + --- - --- + --- + --- - --- + -- + -- - -- + |
1 + q - --- + q + --- - --- + --- + --- - --- + -- + -- - -- + |
||
16 14 13 12 11 10 9 8 7 |
16 14 13 12 11 10 9 8 7 |
||
Line 205: | Line 259: | ||
6 7 8 9 10 |
6 7 8 9 10 |
||
5 q + 7 q - q - 2 q + q</nowiki></ |
5 q + 7 q - q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:01, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 17's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8 |
Gauss code | -1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7 |
Dowker-Thistlethwaite code | 4 10 12 14 16 2 6 18 8 |
Conway Notation | [21312] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 6}, {5, 7}, {6, 1}, {8, 2}, {7, 10}, {1, 8}] |
[edit Notes on presentations of 9 17]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 17"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 6, -5, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 14 16 2 6 18 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[21312] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 6}, {5, 7}, {6, 1}, {8, 2}, {7, 10}, {1, 8}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 17"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 17"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 17. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|