10 41: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 41 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,8,-9,7,-5,3,-4,2,-7,10,-6,9,-8,6,-10,5/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=41|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,8,-9,7,-5,3,-4,2,-7,10,-6,9,-8,6,-10,5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 26: Line 15:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = [[K11n5]], |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = [[10_94]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11n5]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[10_94]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
Line 73: Line 41:
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{10}-3 q^9+11 q^7-13 q^6-10 q^5+37 q^4-22 q^3-37 q^2+71 q-19-74 q^{-1} +97 q^{-2} -6 q^{-3} -104 q^{-4} +103 q^{-5} +12 q^{-6} -110 q^{-7} +85 q^{-8} +22 q^{-9} -86 q^{-10} +53 q^{-11} +18 q^{-12} -47 q^{-13} +24 q^{-14} +8 q^{-15} -17 q^{-16} +7 q^{-17} +2 q^{-18} -3 q^{-19} + q^{-20} </math> |

coloured_jones_3 = <math>q^{21}-3 q^{20}+5 q^{18}+6 q^{17}-13 q^{16}-17 q^{15}+20 q^{14}+39 q^{13}-22 q^{12}-71 q^{11}+9 q^{10}+117 q^9+15 q^8-157 q^7-67 q^6+198 q^5+129 q^4-216 q^3-214 q^2+230 q+287-207 q^{-1} -375 q^{-2} +187 q^{-3} +436 q^{-4} -137 q^{-5} -500 q^{-6} +93 q^{-7} +535 q^{-8} -36 q^{-9} -553 q^{-10} -19 q^{-11} +546 q^{-12} +67 q^{-13} -510 q^{-14} -105 q^{-15} +452 q^{-16} +124 q^{-17} -373 q^{-18} -130 q^{-19} +293 q^{-20} +114 q^{-21} -213 q^{-22} -91 q^{-23} +146 q^{-24} +66 q^{-25} -97 q^{-26} -40 q^{-27} +59 q^{-28} +24 q^{-29} -36 q^{-30} -12 q^{-31} +20 q^{-32} +6 q^{-33} -11 q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} -3 q^{-38} + q^{-39} </math> |
{{Display Coloured Jones|J2=<math>q^{10}-3 q^9+11 q^7-13 q^6-10 q^5+37 q^4-22 q^3-37 q^2+71 q-19-74 q^{-1} +97 q^{-2} -6 q^{-3} -104 q^{-4} +103 q^{-5} +12 q^{-6} -110 q^{-7} +85 q^{-8} +22 q^{-9} -86 q^{-10} +53 q^{-11} +18 q^{-12} -47 q^{-13} +24 q^{-14} +8 q^{-15} -17 q^{-16} +7 q^{-17} +2 q^{-18} -3 q^{-19} + q^{-20} </math>|J3=<math>q^{21}-3 q^{20}+5 q^{18}+6 q^{17}-13 q^{16}-17 q^{15}+20 q^{14}+39 q^{13}-22 q^{12}-71 q^{11}+9 q^{10}+117 q^9+15 q^8-157 q^7-67 q^6+198 q^5+129 q^4-216 q^3-214 q^2+230 q+287-207 q^{-1} -375 q^{-2} +187 q^{-3} +436 q^{-4} -137 q^{-5} -500 q^{-6} +93 q^{-7} +535 q^{-8} -36 q^{-9} -553 q^{-10} -19 q^{-11} +546 q^{-12} +67 q^{-13} -510 q^{-14} -105 q^{-15} +452 q^{-16} +124 q^{-17} -373 q^{-18} -130 q^{-19} +293 q^{-20} +114 q^{-21} -213 q^{-22} -91 q^{-23} +146 q^{-24} +66 q^{-25} -97 q^{-26} -40 q^{-27} +59 q^{-28} +24 q^{-29} -36 q^{-30} -12 q^{-31} +20 q^{-32} +6 q^{-33} -11 q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} -3 q^{-38} + q^{-39} </math>|J4=<math>q^{36}-3 q^{35}+5 q^{33}+6 q^{31}-20 q^{30}-10 q^{29}+20 q^{28}+15 q^{27}+48 q^{26}-64 q^{25}-73 q^{24}+8 q^{23}+45 q^{22}+206 q^{21}-67 q^{20}-196 q^{19}-141 q^{18}-28 q^{17}+507 q^{16}+119 q^{15}-231 q^{14}-445 q^{13}-398 q^{12}+757 q^{11}+517 q^{10}+69 q^9-692 q^8-1095 q^7+682 q^6+898 q^5+746 q^4-604 q^3-1864 q^2+210 q+981+1579 q^{-1} -122 q^{-2} -2422 q^{-3} -475 q^{-4} +713 q^{-5} +2302 q^{-6} +577 q^{-7} -2665 q^{-8} -1157 q^{-9} +235 q^{-10} +2791 q^{-11} +1288 q^{-12} -2619 q^{-13} -1710 q^{-14} -320 q^{-15} +2980 q^{-16} +1883 q^{-17} -2279 q^{-18} -2026 q^{-19} -874 q^{-20} +2774 q^{-21} +2217 q^{-22} -1656 q^{-23} -1940 q^{-24} -1285 q^{-25} +2135 q^{-26} +2127 q^{-27} -916 q^{-28} -1432 q^{-29} -1359 q^{-30} +1293 q^{-31} +1608 q^{-32} -361 q^{-33} -749 q^{-34} -1057 q^{-35} +600 q^{-36} +929 q^{-37} -119 q^{-38} -235 q^{-39} -609 q^{-40} +230 q^{-41} +409 q^{-42} -74 q^{-43} -12 q^{-44} -266 q^{-45} +91 q^{-46} +144 q^{-47} -63 q^{-48} +27 q^{-49} -92 q^{-50} +41 q^{-51} +44 q^{-52} -37 q^{-53} +16 q^{-54} -26 q^{-55} +14 q^{-56} +12 q^{-57} -13 q^{-58} +5 q^{-59} -5 q^{-60} +3 q^{-61} +2 q^{-62} -3 q^{-63} + q^{-64} </math>|J5=<math>q^{55}-3 q^{54}+5 q^{52}-q^{49}-13 q^{48}-10 q^{47}+20 q^{46}+24 q^{45}+15 q^{44}-3 q^{43}-57 q^{42}-73 q^{41}-3 q^{40}+98 q^{39}+136 q^{38}+81 q^{37}-98 q^{36}-274 q^{35}-231 q^{34}+48 q^{33}+388 q^{32}+488 q^{31}+156 q^{30}-440 q^{29}-822 q^{28}-557 q^{27}+309 q^{26}+1162 q^{25}+1143 q^{24}+98 q^{23}-1294 q^{22}-1893 q^{21}-890 q^{20}+1169 q^{19}+2580 q^{18}+1963 q^{17}-495 q^{16}-3034 q^{15}-3320 q^{14}-616 q^{13}+3036 q^{12}+4575 q^{11}+2290 q^{10}-2444 q^9-5669 q^8-4183 q^7+1215 q^6+6215 q^5+6272 q^4+563 q^3-6309 q^2-8086 q-2747+5675 q^{-1} +9762 q^{-2} +5110 q^{-3} -4708 q^{-4} -10866 q^{-5} -7467 q^{-6} +3196 q^{-7} +11732 q^{-8} +9709 q^{-9} -1663 q^{-10} -12094 q^{-11} -11696 q^{-12} -108 q^{-13} +12281 q^{-14} +13474 q^{-15} +1751 q^{-16} -12163 q^{-17} -14968 q^{-18} -3440 q^{-19} +11872 q^{-20} +16226 q^{-21} +5044 q^{-22} -11311 q^{-23} -17182 q^{-24} -6620 q^{-25} +10462 q^{-26} +17727 q^{-27} +8139 q^{-28} -9242 q^{-29} -17800 q^{-30} -9471 q^{-31} +7641 q^{-32} +17257 q^{-33} +10522 q^{-34} -5751 q^{-35} -16046 q^{-36} -11104 q^{-37} +3685 q^{-38} +14226 q^{-39} +11134 q^{-40} -1751 q^{-41} -11907 q^{-42} -10492 q^{-43} +49 q^{-44} +9366 q^{-45} +9335 q^{-46} +1143 q^{-47} -6881 q^{-48} -7734 q^{-49} -1824 q^{-50} +4654 q^{-51} +6007 q^{-52} +2020 q^{-53} -2896 q^{-54} -4354 q^{-55} -1827 q^{-56} +1630 q^{-57} +2906 q^{-58} +1475 q^{-59} -813 q^{-60} -1829 q^{-61} -1041 q^{-62} +366 q^{-63} +1045 q^{-64} +667 q^{-65} -136 q^{-66} -563 q^{-67} -378 q^{-68} +44 q^{-69} +279 q^{-70} +195 q^{-71} -23 q^{-72} -131 q^{-73} -73 q^{-74} +8 q^{-75} +49 q^{-76} +40 q^{-77} -15 q^{-78} -33 q^{-79} +5 q^{-80} +11 q^{-81} -4 q^{-82} +11 q^{-83} -5 q^{-84} -15 q^{-85} +10 q^{-86} +6 q^{-87} -7 q^{-88} +3 q^{-89} + q^{-90} -5 q^{-91} +3 q^{-92} +2 q^{-93} -3 q^{-94} + q^{-95} </math>|J6=<math>q^{78}-3 q^{77}+5 q^{75}-7 q^{72}+6 q^{71}-13 q^{70}-10 q^{69}+29 q^{68}+15 q^{67}+15 q^{66}-27 q^{65}+4 q^{64}-68 q^{63}-73 q^{62}+62 q^{61}+89 q^{60}+135 q^{59}+9 q^{58}+63 q^{57}-242 q^{56}-367 q^{55}-95 q^{54}+110 q^{53}+456 q^{52}+367 q^{51}+601 q^{50}-255 q^{49}-953 q^{48}-932 q^{47}-608 q^{46}+398 q^{45}+974 q^{44}+2312 q^{43}+1026 q^{42}-733 q^{41}-2167 q^{40}-2865 q^{39}-1764 q^{38}-12 q^{37}+4402 q^{36}+4486 q^{35}+2707 q^{34}-1036 q^{33}-5025 q^{32}-6815 q^{31}-5672 q^{30}+2853 q^{29}+7427 q^{28}+9801 q^{27}+6133 q^{26}-1711 q^{25}-10728 q^{24}-15749 q^{23}-6530 q^{22}+3169 q^{21}+14993 q^{20}+18223 q^{19}+11488 q^{18}-5657 q^{17}-23111 q^{16}-21653 q^{15}-12620 q^{14}+9494 q^{13}+26828 q^{12}+31357 q^{11}+12391 q^{10}-18421 q^9-33135 q^8-35689 q^7-10156 q^6+22642 q^5+47836 q^4+38313 q^3+1043 q^2-32044 q-55786-38220 q^{-1} +3894 q^{-2} +52563 q^{-3} +62043 q^{-4} +29106 q^{-5} -17439 q^{-6} -65382 q^{-7} -65037 q^{-8} -22978 q^{-9} +45146 q^{-10} +76917 q^{-11} +56713 q^{-12} +4383 q^{-13} -64503 q^{-14} -84666 q^{-15} -49669 q^{-16} +31243 q^{-17} +83078 q^{-18} +78682 q^{-19} +26256 q^{-20} -57964 q^{-21} -97096 q^{-22} -71826 q^{-23} +16414 q^{-24} +84162 q^{-25} +94960 q^{-26} +45142 q^{-27} -49560 q^{-28} -104730 q^{-29} -89622 q^{-30} +1943 q^{-31} +82006 q^{-32} +107014 q^{-33} +62045 q^{-34} -38712 q^{-35} -107583 q^{-36} -104025 q^{-37} -14318 q^{-38} +74179 q^{-39} +113419 q^{-40} +77868 q^{-41} -22271 q^{-42} -101680 q^{-43} -112526 q^{-44} -33077 q^{-45} +56857 q^{-46} +109001 q^{-47} +89073 q^{-48} -124 q^{-49} -82953 q^{-50} -109059 q^{-51} -49394 q^{-52} +30992 q^{-53} +89805 q^{-54} +88627 q^{-55} +21109 q^{-56} -53732 q^{-57} -90038 q^{-58} -55055 q^{-59} +4988 q^{-60} +59611 q^{-61} +73183 q^{-62} +32174 q^{-63} -24051 q^{-64} -60527 q^{-65} -46714 q^{-66} -11158 q^{-67} +29527 q^{-68} +48458 q^{-69} +29880 q^{-70} -4180 q^{-71} -31958 q^{-72} -30078 q^{-73} -14530 q^{-74} +9323 q^{-75} +25188 q^{-76} +19731 q^{-77} +3455 q^{-78} -12899 q^{-79} -14492 q^{-80} -10274 q^{-81} +543 q^{-82} +10205 q^{-83} +9688 q^{-84} +3611 q^{-85} -3947 q^{-86} -5031 q^{-87} -5025 q^{-88} -1321 q^{-89} +3269 q^{-90} +3610 q^{-91} +1822 q^{-92} -997 q^{-93} -1077 q^{-94} -1814 q^{-95} -920 q^{-96} +891 q^{-97} +1025 q^{-98} +595 q^{-99} -302 q^{-100} +10 q^{-101} -487 q^{-102} -392 q^{-103} +249 q^{-104} +219 q^{-105} +123 q^{-106} -142 q^{-107} +128 q^{-108} -92 q^{-109} -132 q^{-110} +83 q^{-111} +36 q^{-112} +12 q^{-113} -70 q^{-114} +67 q^{-115} -10 q^{-116} -40 q^{-117} +29 q^{-118} +3 q^{-119} +2 q^{-120} -26 q^{-121} +21 q^{-122} +2 q^{-123} -13 q^{-124} +9 q^{-125} - q^{-126} + q^{-127} -5 q^{-128} +3 q^{-129} +2 q^{-130} -3 q^{-131} + q^{-132} </math>|J7=<math>q^{105}-3 q^{104}+5 q^{102}-7 q^{99}+6 q^{97}-13 q^{96}-q^{95}+20 q^{94}+15 q^{93}+15 q^{92}-27 q^{91}-31 q^{90}+4 q^{89}-57 q^{88}-19 q^{87}+53 q^{86}+89 q^{85}+148 q^{84}+8 q^{83}-88 q^{82}-83 q^{81}-269 q^{80}-229 q^{79}-34 q^{78}+170 q^{77}+605 q^{76}+500 q^{75}+218 q^{74}+6 q^{73}-756 q^{72}-1064 q^{71}-1000 q^{70}-557 q^{69}+908 q^{68}+1732 q^{67}+1973 q^{66}+1827 q^{65}-112 q^{64}-1965 q^{63}-3479 q^{62}-4216 q^{61}-1785 q^{60}+1249 q^{59}+4471 q^{58}+7157 q^{57}+5569 q^{56}+1829 q^{55}-3848 q^{54}-10138 q^{53}-10979 q^{52}-7761 q^{51}-50 q^{50}+10960 q^{49}+16620 q^{48}+16829 q^{47}+8893 q^{46}-7103 q^{45}-20157 q^{44}-27579 q^{43}-22959 q^{42}-3654 q^{41}+17772 q^{40}+36288 q^{39}+40873 q^{38}+23044 q^{37}-5655 q^{36}-38811 q^{35}-58918 q^{34}-49299 q^{33}-18218 q^{32}+29217 q^{31}+70628 q^{30}+79120 q^{29}+54279 q^{28}-4146 q^{27}-70199 q^{26}-105251 q^{25}-98015 q^{24}-37985 q^{23}+50949 q^{22}+120100 q^{21}+143664 q^{20}+94365 q^{19}-10861 q^{18}-116323 q^{17}-181668 q^{16}-158894 q^{15}-49939 q^{14}+89082 q^{13}+204314 q^{12}+223127 q^{11}+125841 q^{10}-37376 q^9-204535 q^8-278016 q^7-209941 q^6-35602 q^5+180193 q^4+315818 q^3+292537 q^2+123886 q-131266-332406 q^{-1} -366700 q^{-2} -219039 q^{-3} +63541 q^{-4} +326287 q^{-5} +425090 q^{-6} +313588 q^{-7} +18020 q^{-8} -300224 q^{-9} -466762 q^{-10} -400552 q^{-11} -104271 q^{-12} +258719 q^{-13} +489935 q^{-14} +475838 q^{-15} +190604 q^{-16} -207640 q^{-17} -499106 q^{-18} -537948 q^{-19} -270228 q^{-20} +153051 q^{-21} +496546 q^{-22} +586987 q^{-23} +341870 q^{-24} -99047 q^{-25} -487955 q^{-26} -625688 q^{-27} -403628 q^{-28} +49238 q^{-29} +476008 q^{-30} +656253 q^{-31} +457319 q^{-32} -3979 q^{-33} -463670 q^{-34} -681906 q^{-35} -504643 q^{-36} -37239 q^{-37} +451185 q^{-38} +704227 q^{-39} +548224 q^{-40} +76868 q^{-41} -437224 q^{-42} -723423 q^{-43} -590117 q^{-44} -118240 q^{-45} +418986 q^{-46} +738229 q^{-47} +630766 q^{-48} +163718 q^{-49} -392270 q^{-50} -744700 q^{-51} -669088 q^{-52} -215267 q^{-53} +353345 q^{-54} +738647 q^{-55} +701339 q^{-56} +271792 q^{-57} -299629 q^{-58} -714860 q^{-59} -722203 q^{-60} -329990 q^{-61} +231138 q^{-62} +669613 q^{-63} +725758 q^{-64} +384010 q^{-65} -151130 q^{-66} -602189 q^{-67} -706850 q^{-68} -426152 q^{-69} +66032 q^{-70} +514775 q^{-71} +662652 q^{-72} +450056 q^{-73} +15962 q^{-74} -414116 q^{-75} -594816 q^{-76} -450571 q^{-77} -85577 q^{-78} +308775 q^{-79} +507937 q^{-80} +426833 q^{-81} +136688 q^{-82} -208698 q^{-83} -411023 q^{-84} -382051 q^{-85} -165017 q^{-86} +122682 q^{-87} +313046 q^{-88} +322316 q^{-89} +171536 q^{-90} -55721 q^{-91} -223315 q^{-92} -256327 q^{-93} -160059 q^{-94} +10073 q^{-95} +148231 q^{-96} +191585 q^{-97} +136538 q^{-98} +16367 q^{-99} -90360 q^{-100} -134545 q^{-101} -108038 q^{-102} -27646 q^{-103} +50119 q^{-104} +88736 q^{-105} +79332 q^{-106} +28709 q^{-107} -24306 q^{-108} -54708 q^{-109} -54676 q^{-110} -24540 q^{-111} +9734 q^{-112} +31648 q^{-113} +35373 q^{-114} +18291 q^{-115} -2489 q^{-116} -17000 q^{-117} -21548 q^{-118} -12382 q^{-119} -548 q^{-120} +8471 q^{-121} +12522 q^{-122} +7721 q^{-123} +1268 q^{-124} -3923 q^{-125} -6875 q^{-126} -4360 q^{-127} -1171 q^{-128} +1531 q^{-129} +3622 q^{-130} +2379 q^{-131} +852 q^{-132} -574 q^{-133} -1911 q^{-134} -1089 q^{-135} -426 q^{-136} +73 q^{-137} +862 q^{-138} +505 q^{-139} +325 q^{-140} +31 q^{-141} -530 q^{-142} -169 q^{-143} -48 q^{-144} -66 q^{-145} +162 q^{-146} +27 q^{-147} +107 q^{-148} +71 q^{-149} -168 q^{-150} -3 q^{-151} +32 q^{-152} -28 q^{-153} +24 q^{-154} -36 q^{-155} +34 q^{-156} +38 q^{-157} -58 q^{-158} +8 q^{-159} +18 q^{-160} -5 q^{-161} +4 q^{-162} -19 q^{-163} +10 q^{-164} +13 q^{-165} -17 q^{-166} +3 q^{-167} +5 q^{-168} - q^{-169} + q^{-170} -5 q^{-171} +3 q^{-172} +2 q^{-173} -3 q^{-174} + q^{-175} </math>}}
coloured_jones_4 = <math>q^{36}-3 q^{35}+5 q^{33}+6 q^{31}-20 q^{30}-10 q^{29}+20 q^{28}+15 q^{27}+48 q^{26}-64 q^{25}-73 q^{24}+8 q^{23}+45 q^{22}+206 q^{21}-67 q^{20}-196 q^{19}-141 q^{18}-28 q^{17}+507 q^{16}+119 q^{15}-231 q^{14}-445 q^{13}-398 q^{12}+757 q^{11}+517 q^{10}+69 q^9-692 q^8-1095 q^7+682 q^6+898 q^5+746 q^4-604 q^3-1864 q^2+210 q+981+1579 q^{-1} -122 q^{-2} -2422 q^{-3} -475 q^{-4} +713 q^{-5} +2302 q^{-6} +577 q^{-7} -2665 q^{-8} -1157 q^{-9} +235 q^{-10} +2791 q^{-11} +1288 q^{-12} -2619 q^{-13} -1710 q^{-14} -320 q^{-15} +2980 q^{-16} +1883 q^{-17} -2279 q^{-18} -2026 q^{-19} -874 q^{-20} +2774 q^{-21} +2217 q^{-22} -1656 q^{-23} -1940 q^{-24} -1285 q^{-25} +2135 q^{-26} +2127 q^{-27} -916 q^{-28} -1432 q^{-29} -1359 q^{-30} +1293 q^{-31} +1608 q^{-32} -361 q^{-33} -749 q^{-34} -1057 q^{-35} +600 q^{-36} +929 q^{-37} -119 q^{-38} -235 q^{-39} -609 q^{-40} +230 q^{-41} +409 q^{-42} -74 q^{-43} -12 q^{-44} -266 q^{-45} +91 q^{-46} +144 q^{-47} -63 q^{-48} +27 q^{-49} -92 q^{-50} +41 q^{-51} +44 q^{-52} -37 q^{-53} +16 q^{-54} -26 q^{-55} +14 q^{-56} +12 q^{-57} -13 q^{-58} +5 q^{-59} -5 q^{-60} +3 q^{-61} +2 q^{-62} -3 q^{-63} + q^{-64} </math> |

coloured_jones_5 = <math>q^{55}-3 q^{54}+5 q^{52}-q^{49}-13 q^{48}-10 q^{47}+20 q^{46}+24 q^{45}+15 q^{44}-3 q^{43}-57 q^{42}-73 q^{41}-3 q^{40}+98 q^{39}+136 q^{38}+81 q^{37}-98 q^{36}-274 q^{35}-231 q^{34}+48 q^{33}+388 q^{32}+488 q^{31}+156 q^{30}-440 q^{29}-822 q^{28}-557 q^{27}+309 q^{26}+1162 q^{25}+1143 q^{24}+98 q^{23}-1294 q^{22}-1893 q^{21}-890 q^{20}+1169 q^{19}+2580 q^{18}+1963 q^{17}-495 q^{16}-3034 q^{15}-3320 q^{14}-616 q^{13}+3036 q^{12}+4575 q^{11}+2290 q^{10}-2444 q^9-5669 q^8-4183 q^7+1215 q^6+6215 q^5+6272 q^4+563 q^3-6309 q^2-8086 q-2747+5675 q^{-1} +9762 q^{-2} +5110 q^{-3} -4708 q^{-4} -10866 q^{-5} -7467 q^{-6} +3196 q^{-7} +11732 q^{-8} +9709 q^{-9} -1663 q^{-10} -12094 q^{-11} -11696 q^{-12} -108 q^{-13} +12281 q^{-14} +13474 q^{-15} +1751 q^{-16} -12163 q^{-17} -14968 q^{-18} -3440 q^{-19} +11872 q^{-20} +16226 q^{-21} +5044 q^{-22} -11311 q^{-23} -17182 q^{-24} -6620 q^{-25} +10462 q^{-26} +17727 q^{-27} +8139 q^{-28} -9242 q^{-29} -17800 q^{-30} -9471 q^{-31} +7641 q^{-32} +17257 q^{-33} +10522 q^{-34} -5751 q^{-35} -16046 q^{-36} -11104 q^{-37} +3685 q^{-38} +14226 q^{-39} +11134 q^{-40} -1751 q^{-41} -11907 q^{-42} -10492 q^{-43} +49 q^{-44} +9366 q^{-45} +9335 q^{-46} +1143 q^{-47} -6881 q^{-48} -7734 q^{-49} -1824 q^{-50} +4654 q^{-51} +6007 q^{-52} +2020 q^{-53} -2896 q^{-54} -4354 q^{-55} -1827 q^{-56} +1630 q^{-57} +2906 q^{-58} +1475 q^{-59} -813 q^{-60} -1829 q^{-61} -1041 q^{-62} +366 q^{-63} +1045 q^{-64} +667 q^{-65} -136 q^{-66} -563 q^{-67} -378 q^{-68} +44 q^{-69} +279 q^{-70} +195 q^{-71} -23 q^{-72} -131 q^{-73} -73 q^{-74} +8 q^{-75} +49 q^{-76} +40 q^{-77} -15 q^{-78} -33 q^{-79} +5 q^{-80} +11 q^{-81} -4 q^{-82} +11 q^{-83} -5 q^{-84} -15 q^{-85} +10 q^{-86} +6 q^{-87} -7 q^{-88} +3 q^{-89} + q^{-90} -5 q^{-91} +3 q^{-92} +2 q^{-93} -3 q^{-94} + q^{-95} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{78}-3 q^{77}+5 q^{75}-7 q^{72}+6 q^{71}-13 q^{70}-10 q^{69}+29 q^{68}+15 q^{67}+15 q^{66}-27 q^{65}+4 q^{64}-68 q^{63}-73 q^{62}+62 q^{61}+89 q^{60}+135 q^{59}+9 q^{58}+63 q^{57}-242 q^{56}-367 q^{55}-95 q^{54}+110 q^{53}+456 q^{52}+367 q^{51}+601 q^{50}-255 q^{49}-953 q^{48}-932 q^{47}-608 q^{46}+398 q^{45}+974 q^{44}+2312 q^{43}+1026 q^{42}-733 q^{41}-2167 q^{40}-2865 q^{39}-1764 q^{38}-12 q^{37}+4402 q^{36}+4486 q^{35}+2707 q^{34}-1036 q^{33}-5025 q^{32}-6815 q^{31}-5672 q^{30}+2853 q^{29}+7427 q^{28}+9801 q^{27}+6133 q^{26}-1711 q^{25}-10728 q^{24}-15749 q^{23}-6530 q^{22}+3169 q^{21}+14993 q^{20}+18223 q^{19}+11488 q^{18}-5657 q^{17}-23111 q^{16}-21653 q^{15}-12620 q^{14}+9494 q^{13}+26828 q^{12}+31357 q^{11}+12391 q^{10}-18421 q^9-33135 q^8-35689 q^7-10156 q^6+22642 q^5+47836 q^4+38313 q^3+1043 q^2-32044 q-55786-38220 q^{-1} +3894 q^{-2} +52563 q^{-3} +62043 q^{-4} +29106 q^{-5} -17439 q^{-6} -65382 q^{-7} -65037 q^{-8} -22978 q^{-9} +45146 q^{-10} +76917 q^{-11} +56713 q^{-12} +4383 q^{-13} -64503 q^{-14} -84666 q^{-15} -49669 q^{-16} +31243 q^{-17} +83078 q^{-18} +78682 q^{-19} +26256 q^{-20} -57964 q^{-21} -97096 q^{-22} -71826 q^{-23} +16414 q^{-24} +84162 q^{-25} +94960 q^{-26} +45142 q^{-27} -49560 q^{-28} -104730 q^{-29} -89622 q^{-30} +1943 q^{-31} +82006 q^{-32} +107014 q^{-33} +62045 q^{-34} -38712 q^{-35} -107583 q^{-36} -104025 q^{-37} -14318 q^{-38} +74179 q^{-39} +113419 q^{-40} +77868 q^{-41} -22271 q^{-42} -101680 q^{-43} -112526 q^{-44} -33077 q^{-45} +56857 q^{-46} +109001 q^{-47} +89073 q^{-48} -124 q^{-49} -82953 q^{-50} -109059 q^{-51} -49394 q^{-52} +30992 q^{-53} +89805 q^{-54} +88627 q^{-55} +21109 q^{-56} -53732 q^{-57} -90038 q^{-58} -55055 q^{-59} +4988 q^{-60} +59611 q^{-61} +73183 q^{-62} +32174 q^{-63} -24051 q^{-64} -60527 q^{-65} -46714 q^{-66} -11158 q^{-67} +29527 q^{-68} +48458 q^{-69} +29880 q^{-70} -4180 q^{-71} -31958 q^{-72} -30078 q^{-73} -14530 q^{-74} +9323 q^{-75} +25188 q^{-76} +19731 q^{-77} +3455 q^{-78} -12899 q^{-79} -14492 q^{-80} -10274 q^{-81} +543 q^{-82} +10205 q^{-83} +9688 q^{-84} +3611 q^{-85} -3947 q^{-86} -5031 q^{-87} -5025 q^{-88} -1321 q^{-89} +3269 q^{-90} +3610 q^{-91} +1822 q^{-92} -997 q^{-93} -1077 q^{-94} -1814 q^{-95} -920 q^{-96} +891 q^{-97} +1025 q^{-98} +595 q^{-99} -302 q^{-100} +10 q^{-101} -487 q^{-102} -392 q^{-103} +249 q^{-104} +219 q^{-105} +123 q^{-106} -142 q^{-107} +128 q^{-108} -92 q^{-109} -132 q^{-110} +83 q^{-111} +36 q^{-112} +12 q^{-113} -70 q^{-114} +67 q^{-115} -10 q^{-116} -40 q^{-117} +29 q^{-118} +3 q^{-119} +2 q^{-120} -26 q^{-121} +21 q^{-122} +2 q^{-123} -13 q^{-124} +9 q^{-125} - q^{-126} + q^{-127} -5 q^{-128} +3 q^{-129} +2 q^{-130} -3 q^{-131} + q^{-132} </math> |

coloured_jones_7 = <math>q^{105}-3 q^{104}+5 q^{102}-7 q^{99}+6 q^{97}-13 q^{96}-q^{95}+20 q^{94}+15 q^{93}+15 q^{92}-27 q^{91}-31 q^{90}+4 q^{89}-57 q^{88}-19 q^{87}+53 q^{86}+89 q^{85}+148 q^{84}+8 q^{83}-88 q^{82}-83 q^{81}-269 q^{80}-229 q^{79}-34 q^{78}+170 q^{77}+605 q^{76}+500 q^{75}+218 q^{74}+6 q^{73}-756 q^{72}-1064 q^{71}-1000 q^{70}-557 q^{69}+908 q^{68}+1732 q^{67}+1973 q^{66}+1827 q^{65}-112 q^{64}-1965 q^{63}-3479 q^{62}-4216 q^{61}-1785 q^{60}+1249 q^{59}+4471 q^{58}+7157 q^{57}+5569 q^{56}+1829 q^{55}-3848 q^{54}-10138 q^{53}-10979 q^{52}-7761 q^{51}-50 q^{50}+10960 q^{49}+16620 q^{48}+16829 q^{47}+8893 q^{46}-7103 q^{45}-20157 q^{44}-27579 q^{43}-22959 q^{42}-3654 q^{41}+17772 q^{40}+36288 q^{39}+40873 q^{38}+23044 q^{37}-5655 q^{36}-38811 q^{35}-58918 q^{34}-49299 q^{33}-18218 q^{32}+29217 q^{31}+70628 q^{30}+79120 q^{29}+54279 q^{28}-4146 q^{27}-70199 q^{26}-105251 q^{25}-98015 q^{24}-37985 q^{23}+50949 q^{22}+120100 q^{21}+143664 q^{20}+94365 q^{19}-10861 q^{18}-116323 q^{17}-181668 q^{16}-158894 q^{15}-49939 q^{14}+89082 q^{13}+204314 q^{12}+223127 q^{11}+125841 q^{10}-37376 q^9-204535 q^8-278016 q^7-209941 q^6-35602 q^5+180193 q^4+315818 q^3+292537 q^2+123886 q-131266-332406 q^{-1} -366700 q^{-2} -219039 q^{-3} +63541 q^{-4} +326287 q^{-5} +425090 q^{-6} +313588 q^{-7} +18020 q^{-8} -300224 q^{-9} -466762 q^{-10} -400552 q^{-11} -104271 q^{-12} +258719 q^{-13} +489935 q^{-14} +475838 q^{-15} +190604 q^{-16} -207640 q^{-17} -499106 q^{-18} -537948 q^{-19} -270228 q^{-20} +153051 q^{-21} +496546 q^{-22} +586987 q^{-23} +341870 q^{-24} -99047 q^{-25} -487955 q^{-26} -625688 q^{-27} -403628 q^{-28} +49238 q^{-29} +476008 q^{-30} +656253 q^{-31} +457319 q^{-32} -3979 q^{-33} -463670 q^{-34} -681906 q^{-35} -504643 q^{-36} -37239 q^{-37} +451185 q^{-38} +704227 q^{-39} +548224 q^{-40} +76868 q^{-41} -437224 q^{-42} -723423 q^{-43} -590117 q^{-44} -118240 q^{-45} +418986 q^{-46} +738229 q^{-47} +630766 q^{-48} +163718 q^{-49} -392270 q^{-50} -744700 q^{-51} -669088 q^{-52} -215267 q^{-53} +353345 q^{-54} +738647 q^{-55} +701339 q^{-56} +271792 q^{-57} -299629 q^{-58} -714860 q^{-59} -722203 q^{-60} -329990 q^{-61} +231138 q^{-62} +669613 q^{-63} +725758 q^{-64} +384010 q^{-65} -151130 q^{-66} -602189 q^{-67} -706850 q^{-68} -426152 q^{-69} +66032 q^{-70} +514775 q^{-71} +662652 q^{-72} +450056 q^{-73} +15962 q^{-74} -414116 q^{-75} -594816 q^{-76} -450571 q^{-77} -85577 q^{-78} +308775 q^{-79} +507937 q^{-80} +426833 q^{-81} +136688 q^{-82} -208698 q^{-83} -411023 q^{-84} -382051 q^{-85} -165017 q^{-86} +122682 q^{-87} +313046 q^{-88} +322316 q^{-89} +171536 q^{-90} -55721 q^{-91} -223315 q^{-92} -256327 q^{-93} -160059 q^{-94} +10073 q^{-95} +148231 q^{-96} +191585 q^{-97} +136538 q^{-98} +16367 q^{-99} -90360 q^{-100} -134545 q^{-101} -108038 q^{-102} -27646 q^{-103} +50119 q^{-104} +88736 q^{-105} +79332 q^{-106} +28709 q^{-107} -24306 q^{-108} -54708 q^{-109} -54676 q^{-110} -24540 q^{-111} +9734 q^{-112} +31648 q^{-113} +35373 q^{-114} +18291 q^{-115} -2489 q^{-116} -17000 q^{-117} -21548 q^{-118} -12382 q^{-119} -548 q^{-120} +8471 q^{-121} +12522 q^{-122} +7721 q^{-123} +1268 q^{-124} -3923 q^{-125} -6875 q^{-126} -4360 q^{-127} -1171 q^{-128} +1531 q^{-129} +3622 q^{-130} +2379 q^{-131} +852 q^{-132} -574 q^{-133} -1911 q^{-134} -1089 q^{-135} -426 q^{-136} +73 q^{-137} +862 q^{-138} +505 q^{-139} +325 q^{-140} +31 q^{-141} -530 q^{-142} -169 q^{-143} -48 q^{-144} -66 q^{-145} +162 q^{-146} +27 q^{-147} +107 q^{-148} +71 q^{-149} -168 q^{-150} -3 q^{-151} +32 q^{-152} -28 q^{-153} +24 q^{-154} -36 q^{-155} +34 q^{-156} +38 q^{-157} -58 q^{-158} +8 q^{-159} +18 q^{-160} -5 q^{-161} +4 q^{-162} -19 q^{-163} +10 q^{-164} +13 q^{-165} -17 q^{-166} +3 q^{-167} +5 q^{-168} - q^{-169} + q^{-170} -5 q^{-171} +3 q^{-172} +2 q^{-173} -3 q^{-174} + q^{-175} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 41]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 41]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7],
X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7],
X[7, 16, 8, 17], X[19, 15, 20, 14]]</nowiki></pre></td></tr>
X[7, 16, 8, 17], X[19, 15, 20, 14]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 41]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 41]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8,
6, -10, 5]</nowiki></pre></td></tr>
6, -10, 5]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 41]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 16, 20, 2, 8, 18, 6, 14]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 41]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 41]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 16, 20, 2, 8, 18, 6, 14]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 41]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 41]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 41]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_41_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 41]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 41]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 17 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 41]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 41]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_41_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 41]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 41]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 17 2 3
-21 + t - -- + -- + 17 t - 7 t + t
-21 + t - -- + -- + 17 t - 7 t + t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 41]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 41]][z]</nowiki></code></td></tr>
1 - 2 z - z + z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 41], Knot[11, NonAlternating, 5]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 - 2 z - z + z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 41]], KnotSignature[Knot[10, 41]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{71, -2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 41]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 6 9 11 12 11 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 41], Knot[11, NonAlternating, 5]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 41]], KnotSignature[Knot[10, 41]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{71, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 41]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 6 9 11 12 11 2 3
-8 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q
-8 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q
6 5 4 3 2 q
6 5 4 3 2 q
q q q q q</nowiki></pre></td></tr>
q q q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 41], Knot[10, 94]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 41]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -18 2 2 -10 2 2 2 2 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 41], Knot[10, 94]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 41]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -22 -18 2 2 -10 2 2 2 2 2 4
1 + q - q + --- - --- + q - -- + -- - -- + -- - q + 2 q -
1 + q - q + --- - --- + q - -- + -- - -- + -- - q + 2 q -
16 14 8 6 4 2
16 14 8 6 4 2
Line 147: Line 181:
6 10
6 10
q + q</nowiki></pre></td></tr>
q + q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 41]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 41]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-2 2 4 6 2 z 2 2 4 2 6 2
-2 2 4 6 2 z 2 2 4 2 6 2
-1 + a + 2 a - 2 a + a - 4 z + -- + 4 a z - 4 a z + a z -
-1 + a + 2 a - 2 a + a - 4 z + -- + 4 a z - 4 a z + a z -
Line 157: Line 195:
4 2 4 4 4 2 6
4 2 4 4 4 2 6
2 z + 3 a z - 2 a z + a z</nowiki></pre></td></tr>
2 z + 3 a z - 2 a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 41]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 41]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-2 2 4 6 z 3 7 2 3 z
-2 2 4 6 z 3 7 2 3 z
-1 - a - 2 a - 2 a - a - - - 2 a z - 2 a z + a z + 7 z + ---- +
-1 - a - 2 a - 2 a - a - - - 2 a z - 2 a z + a z + 7 z + ---- +
Line 189: Line 231:
8 2 8 4 8 9 3 9
8 2 8 4 8 9 3 9
3 z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr>
3 z + 6 a z + 3 a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 41]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 7 1 2 1 4 2 5 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 41]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 7 1 2 1 4 2 5 4
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
Line 206: Line 256:
3 3 5 3 7 4
3 3 5 3 7 4
q t + 2 q t + q t</nowiki></pre></td></tr>
q t + 2 q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 41], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 3 2 7 17 8 24 47 18 53
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 41], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 3 2 7 17 8 24 47 18 53
-19 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
-19 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- -
19 18 17 16 15 14 13 12 11
19 18 17 16 15 14 13 12 11
Line 220: Line 274:
3 4 5 6 7 9 10
3 4 5 6 7 9 10
22 q + 37 q - 10 q - 13 q + 11 q - 3 q + q</nowiki></pre></td></tr>
22 q + 37 q - 10 q - 13 q + 11 q - 3 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:02, 1 September 2005

10 40.gif

10_40

10 42.gif

10_42

10 41.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 41's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 41 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,20,10,1 X15,19,16,18 X13,8,14,9 X17,6,18,7 X7,16,8,17 X19,15,20,14
Gauss code -1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, 6, -10, 5
Dowker-Thistlethwaite code 4 10 12 16 20 2 8 18 6 14
Conway Notation [221212]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 10, width is 5,

Braid index is 5

10 41 ML.gif 10 41 AP.gif
[{12, 7}, {1, 10}, {11, 8}, {7, 9}, {10, 12}, {6, 11}, {8, 2}, {3, 1}, {2, 5}, {4, 6}, {5, 3}, {9, 4}]

[edit Notes on presentations of 10 41]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-3]
Hyperbolic Volume 12.3766
A-Polynomial See Data:10 41/A-polynomial

[edit Notes for 10 41's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 10 41's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 71, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n5,}

Same Jones Polynomial (up to mirroring, ): {10_94,}

Vassiliev invariants

V2 and V3: (-2, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 41. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-101234χ
7          11
5         2 -2
3        41 3
1       42  -2
-1      74   3
-3     65    -1
-5    56     -1
-7   46      2
-9  25       -3
-11 14        3
-13 2         -2
-151          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials