10 40
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 40's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X7,17,8,16 X15,19,16,18 X19,15,20,14 X13,7,14,6 X17,9,18,8 X9,2,10,3 |
| Gauss code | -1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, 3 |
| Dowker-Thistlethwaite code | 4 10 12 16 2 20 6 18 8 14 |
| Conway Notation | [222112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 2}, {3, 1}, {2, 5}, {6, 4}, {5, 3}, {4, 9}] |
[edit Notes on presentations of 10 40]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 40"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X7,17,8,16 X15,19,16,18 X19,15,20,14 X13,7,14,6 X17,9,18,8 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 8, -5, 9, -10, 2, -3, 4, -8, 7, -6, 5, -9, 6, -7, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 2 20 6 18 8 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[222112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,2,-1,2,2,-3,2,-3,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 2}, {3, 1}, {2, 5}, {6, 4}, {5, 3}, {4, 9}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+17 t-21+17 t^{-1} -8 t^{-2} +2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+4 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 75, 2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+2 q^{12}-5 q^{10}+8 q^8-13 q^6+18 q^4-22 q^2+25-25 q^{-2} +23 q^{-4} -15 q^{-6} +7 q^{-8} +6 q^{-10} -17 q^{-12} +32 q^{-14} -40 q^{-16} +48 q^{-18} -48 q^{-20} +47 q^{-22} -40 q^{-24} +29 q^{-26} -17 q^{-28} +2 q^{-30} +7 q^{-32} -17 q^{-34} +22 q^{-36} -25 q^{-38} +25 q^{-40} -21 q^{-42} +17 q^{-44} -12 q^{-46} +8 q^{-48} -5 q^{-50} +2 q^{-52} - q^{-54} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{24}-2 q^{20}-2 q^{18}+3 q^{16}+6 q^{14}-q^{12}-11 q^{10}-7 q^8+11 q^6+16 q^4-5 q^2-24-9 q^{-2} +22 q^{-4} +22 q^{-6} -12 q^{-8} -26 q^{-10} +27 q^{-14} +13 q^{-16} -15 q^{-18} -14 q^{-20} +13 q^{-22} +17 q^{-24} -5 q^{-26} -17 q^{-28} +2 q^{-30} +16 q^{-32} + q^{-34} -18 q^{-36} -6 q^{-38} +17 q^{-40} +10 q^{-42} -17 q^{-44} -18 q^{-46} +13 q^{-48} +24 q^{-50} -3 q^{-52} -28 q^{-54} -11 q^{-56} +21 q^{-58} +21 q^{-60} -9 q^{-62} -23 q^{-64} -4 q^{-66} +16 q^{-68} +11 q^{-70} -6 q^{-72} -10 q^{-74} - q^{-76} +6 q^{-78} +3 q^{-80} -2 q^{-82} -2 q^{-84} + q^{-88} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-2 q^{16}+3 q^{14}-4 q^{12}+7 q^{10}-11 q^8+11 q^6-15 q^4+17 q^2-22+17 q^{-2} -19 q^{-4} +20 q^{-6} -13 q^{-8} +9 q^{-10} + q^{-12} +4 q^{-14} +16 q^{-16} -17 q^{-18} +25 q^{-20} -27 q^{-22} +37 q^{-24} -38 q^{-26} +34 q^{-28} -38 q^{-30} +36 q^{-32} -28 q^{-34} +21 q^{-36} -20 q^{-38} +9 q^{-40} -6 q^{-44} +6 q^{-46} -16 q^{-48} +19 q^{-50} -18 q^{-52} +18 q^{-54} -20 q^{-56} +18 q^{-58} -13 q^{-60} +11 q^{-62} -10 q^{-64} +7 q^{-66} -4 q^{-68} +3 q^{-70} -2 q^{-72} + q^{-74} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-2 q^{30}+5 q^{28}-8 q^{26}+8 q^{24}-7 q^{22}-2 q^{20}+16 q^{18}-33 q^{16}+47 q^{14}-51 q^{12}+33 q^{10}+2 q^8-50 q^6+101 q^4-129 q^2+121-72 q^{-2} -17 q^{-4} +104 q^{-6} -167 q^{-8} +180 q^{-10} -128 q^{-12} +42 q^{-14} +60 q^{-16} -129 q^{-18} +140 q^{-20} -83 q^{-22} -4 q^{-24} +84 q^{-26} -117 q^{-28} +87 q^{-30} +6 q^{-32} -105 q^{-34} +189 q^{-36} -204 q^{-38} +146 q^{-40} -22 q^{-42} -125 q^{-44} +230 q^{-46} -268 q^{-48} +222 q^{-50} -104 q^{-52} -35 q^{-54} +148 q^{-56} -201 q^{-58} +176 q^{-60} -92 q^{-62} -19 q^{-64} +94 q^{-66} -114 q^{-68} +68 q^{-70} +21 q^{-72} -98 q^{-74} +142 q^{-76} -123 q^{-78} +47 q^{-80} +49 q^{-82} -139 q^{-84} +179 q^{-86} -159 q^{-88} +92 q^{-90} -5 q^{-92} -71 q^{-94} +115 q^{-96} -120 q^{-98} +93 q^{-100} -47 q^{-102} - q^{-104} +31 q^{-106} -47 q^{-108} +43 q^{-110} -30 q^{-112} +17 q^{-114} -2 q^{-116} -6 q^{-118} +8 q^{-120} -8 q^{-122} +5 q^{-124} -2 q^{-126} + q^{-128} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 40"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+17 t-21+17 t^{-1} -8 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+4 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_103,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {10_103,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 40"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+17 t-21+17 t^{-1} -8 t^{-2} +2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+3 q^7-6 q^6+9 q^5-12 q^4+13 q^3-11 q^2+10 q-6+3 q^{-1} - q^{-2} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_103,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_103,} |
Vassiliev invariants
| V2 and V3: | (3, 4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 40. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-3 q^{22}+q^{21}+9 q^{20}-16 q^{19}+35 q^{17}-43 q^{16}-12 q^{15}+82 q^{14}-71 q^{13}-38 q^{12}+130 q^{11}-83 q^{10}-67 q^9+150 q^8-71 q^7-79 q^6+132 q^5-42 q^4-70 q^3+86 q^2-14 q-44+37 q^{-1} -17 q^{-3} +9 q^{-4} + q^{-5} -3 q^{-6} + q^{-7} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}+3 q^{44}-q^{43}-4 q^{42}-2 q^{41}+13 q^{40}+3 q^{39}-26 q^{38}-10 q^{37}+50 q^{36}+25 q^{35}-83 q^{34}-59 q^{33}+129 q^{32}+111 q^{31}-173 q^{30}-194 q^{29}+216 q^{28}+296 q^{27}-240 q^{26}-417 q^{25}+247 q^{24}+536 q^{23}-225 q^{22}-653 q^{21}+191 q^{20}+741 q^{19}-138 q^{18}-796 q^{17}+69 q^{16}+828 q^{15}-14 q^{14}-803 q^{13}-66 q^{12}+768 q^{11}+110 q^{10}-669 q^9-177 q^8+580 q^7+195 q^6-445 q^5-218 q^4+336 q^3+196 q^2-216 q-173+132 q^{-1} +131 q^{-2} -70 q^{-3} -88 q^{-4} +30 q^{-5} +54 q^{-6} -11 q^{-7} -29 q^{-8} +3 q^{-9} +14 q^{-10} -2 q^{-11} -4 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-3 q^{73}+q^{72}+4 q^{71}-3 q^{70}+5 q^{69}-16 q^{68}+5 q^{67}+22 q^{66}-12 q^{65}+14 q^{64}-66 q^{63}+11 q^{62}+93 q^{61}-4 q^{60}+24 q^{59}-230 q^{58}-24 q^{57}+268 q^{56}+125 q^{55}+105 q^{54}-616 q^{53}-271 q^{52}+498 q^{51}+534 q^{50}+486 q^{49}-1190 q^{48}-945 q^{47}+510 q^{46}+1203 q^{45}+1425 q^{44}-1648 q^{43}-2023 q^{42}+q^{41}+1818 q^{40}+2866 q^{39}-1646 q^{38}-3136 q^{37}-1014 q^{36}+2039 q^{35}+4381 q^{34}-1153 q^{33}-3872 q^{32}-2167 q^{31}+1794 q^{30}+5480 q^{29}-399 q^{28}-4043 q^{27}-3094 q^{26}+1222 q^{25}+5924 q^{24}+385 q^{23}-3674 q^{22}-3610 q^{21}+459 q^{20}+5652 q^{19}+1077 q^{18}-2814 q^{17}-3639 q^{16}-395 q^{15}+4702 q^{14}+1538 q^{13}-1621 q^{12}-3121 q^{11}-1107 q^{10}+3258 q^9+1578 q^8-456 q^7-2156 q^6-1372 q^5+1758 q^4+1165 q^3+264 q^2-1103 q-1120+675 q^{-1} +583 q^{-2} +423 q^{-3} -371 q^{-4} -634 q^{-5} +171 q^{-6} +167 q^{-7} +268 q^{-8} -58 q^{-9} -252 q^{-10} +32 q^{-11} +9 q^{-12} +103 q^{-13} +7 q^{-14} -74 q^{-15} +12 q^{-16} -10 q^{-17} +25 q^{-18} +5 q^{-19} -17 q^{-20} +5 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




