10 103
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 103's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17 |
| Gauss code | 1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3 |
| Dowker-Thistlethwaite code | 6 10 18 16 14 4 20 8 2 12 |
| Conway Notation | [30:2:2] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{3, 12}, {2, 9}, {4, 10}, {9, 11}, {5, 3}, {8, 4}, {10, 7}, {6, 8}, {7, 13}, {12, 6}, {1, 5}, {13, 2}, {11, 1}] |
[edit Notes on presentations of 10 103]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 103"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 18 16 14 4 20 8 2 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[30:2:2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,-2,1,3,-2,-2,3,-2,-2,3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 9}, {4, 10}, {9, 11}, {5, 3}, {8, 4}, {10, 7}, {6, 8}, {7, 13}, {12, 6}, {1, 5}, {13, 2}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+17 t-21+17 t^{-1} -8 t^{-2} +2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+4 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{5,t+1\}} |
| Determinant and Signature | { 75, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+3 q-6+10 q^{-1} -11 q^{-2} +13 q^{-3} -12 q^{-4} +9 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-2 z^2 a^6-a^6+z^6 a^4+3 z^4 a^4+3 z^2 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+3 a^2-z^4-2 z^2-1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-2 z^3 a^9+3 z^6 a^8-6 z^4 a^8+z^2 a^8+5 z^7 a^7-12 z^5 a^7+10 z^3 a^7-4 z a^7+5 z^8 a^6-12 z^6 a^6+13 z^4 a^6-6 z^2 a^6+a^6+2 z^9 a^5+3 z^7 a^5-16 z^5 a^5+21 z^3 a^5-6 z a^5+9 z^8 a^4-23 z^6 a^4+25 z^4 a^4-8 z^2 a^4+2 z^9 a^3+2 z^7 a^3-9 z^5 a^3+9 z^3 a^3-2 z a^3+4 z^8 a^2-5 z^6 a^2+2 z^2 a^2-3 a^2+4 z^7 a-5 z^5 a-2 z^3 a+z a+3 z^6-6 z^4+3 z^2-1+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}+q^{22}-q^{20}-q^{18}+2 q^{16}-3 q^{14}+q^{12}+q^8+4 q^6-q^4+3 q^2-1- q^{-2} + q^{-4} - q^{-6} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-2 q^{126}+4 q^{124}-7 q^{122}+7 q^{120}-6 q^{118}+12 q^{114}-22 q^{112}+35 q^{110}-42 q^{108}+35 q^{106}-15 q^{104}-25 q^{102}+72 q^{100}-108 q^{98}+118 q^{96}-88 q^{94}+18 q^{92}+74 q^{90}-153 q^{88}+184 q^{86}-149 q^{84}+53 q^{82}+55 q^{80}-142 q^{78}+160 q^{76}-106 q^{74}+11 q^{72}+92 q^{70}-143 q^{68}+115 q^{66}-28 q^{64}-92 q^{62}+180 q^{60}-204 q^{58}+150 q^{56}-38 q^{54}-94 q^{52}+208 q^{50}-252 q^{48}+218 q^{46}-117 q^{44}-25 q^{42}+148 q^{40}-206 q^{38}+189 q^{36}-98 q^{34}-12 q^{32}+112 q^{30}-142 q^{28}+98 q^{26}-2 q^{24}-100 q^{22}+159 q^{20}-140 q^{18}+58 q^{16}+52 q^{14}-136 q^{12}+176 q^{10}-149 q^8+80 q^6+3 q^4-78 q^2+111-107 q^{-2} +78 q^{-4} -34 q^{-6} -3 q^{-8} +28 q^{-10} -42 q^{-12} +39 q^{-14} -29 q^{-16} +15 q^{-18} -3 q^{-20} -6 q^{-22} +8 q^{-24} -8 q^{-26} +5 q^{-28} -2 q^{-30} + q^{-32} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{17}+2 q^{15}-3 q^{13}+3 q^{11}-3 q^9+q^7+2 q^5-q^3+4 q-3 q^{-1} +2 q^{-3} - q^{-5} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+6 q^{42}-8 q^{40}-4 q^{38}+19 q^{36}-10 q^{34}-19 q^{32}+26 q^{30}-27 q^{26}+20 q^{24}+11 q^{22}-20 q^{20}-q^{18}+13 q^{16}-q^{14}-19 q^{12}+13 q^{10}+19 q^8-26 q^6+2 q^4+27 q^2-19-9 q^{-2} +19 q^{-4} -5 q^{-6} -7 q^{-8} +6 q^{-10} - q^{-12} -2 q^{-14} + q^{-16} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{93}+2 q^{91}-3 q^{87}+7 q^{83}+q^{81}-18 q^{79}-5 q^{77}+34 q^{75}+22 q^{73}-47 q^{71}-58 q^{69}+48 q^{67}+103 q^{65}-24 q^{63}-143 q^{61}-25 q^{59}+165 q^{57}+82 q^{55}-158 q^{53}-132 q^{51}+125 q^{49}+164 q^{47}-83 q^{45}-170 q^{43}+36 q^{41}+153 q^{39}+16 q^{37}-131 q^{35}-50 q^{33}+94 q^{31}+91 q^{29}-64 q^{27}-128 q^{25}+20 q^{23}+159 q^{21}+25 q^{19}-175 q^{17}-73 q^{15}+168 q^{13}+124 q^{11}-134 q^9-151 q^7+82 q^5+160 q^3-29 q-131 q^{-1} -19 q^{-3} +95 q^{-5} +37 q^{-7} -53 q^{-9} -34 q^{-11} +22 q^{-13} +22 q^{-15} -8 q^{-17} -12 q^{-19} +5 q^{-21} +4 q^{-23} -3 q^{-25} -2 q^{-27} + q^{-29} +2 q^{-31} - q^{-33} } |
| 4 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}+q^{22}-q^{20}-q^{18}+2 q^{16}-3 q^{14}+q^{12}+q^8+4 q^6-q^4+3 q^2-1- q^{-2} + q^{-4} - q^{-6} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-4 q^{66}+10 q^{64}-22 q^{62}+46 q^{60}-78 q^{58}+124 q^{56}-202 q^{54}+301 q^{52}-406 q^{50}+528 q^{48}-644 q^{46}+711 q^{44}-702 q^{42}+606 q^{40}-428 q^{38}+145 q^{36}+198 q^{34}-556 q^{32}+896 q^{30}-1167 q^{28}+1354 q^{26}-1420 q^{24}+1360 q^{22}-1198 q^{20}+912 q^{18}-578 q^{16}+228 q^{14}+115 q^{12}-388 q^{10}+596 q^8-672 q^6+682 q^4-632 q^2+534-418 q^{-2} +311 q^{-4} -224 q^{-6} +146 q^{-8} -92 q^{-10} +54 q^{-12} -28 q^{-14} +12 q^{-16} -4 q^{-18} + q^{-20} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{62}-q^{60}+2 q^{56}-q^{54}-2 q^{52}-q^{50}+7 q^{48}+q^{46}-11 q^{44}+9 q^{40}-q^{38}-13 q^{36}+2 q^{34}+12 q^{32}-2 q^{30}-10 q^{28}+5 q^{26}+3 q^{24}-11 q^{22}+3 q^{20}+5 q^{18}-3 q^{16}+12 q^{12}+3 q^{10}-10 q^8+4 q^6+14 q^4-6 q^2-11+7 q^{-2} +7 q^{-4} -5 q^{-6} -6 q^{-8} +2 q^{-10} +3 q^{-12} -2 q^{-14} - q^{-16} + q^{-18} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-2 q^{52}+4 q^{48}-6 q^{46}+2 q^{44}+11 q^{42}-15 q^{40}+2 q^{38}+17 q^{36}-22 q^{34}-q^{32}+17 q^{30}-16 q^{28}-4 q^{26}+10 q^{24}-3 q^{22}-6 q^{20}-q^{18}+12 q^{16}-10 q^{12}+22 q^{10}+5 q^8-20 q^6+18 q^4+2 q^2-17+9 q^{-2} + q^{-4} -8 q^{-6} +4 q^{-8} + q^{-10} -2 q^{-12} + q^{-14} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{31}+q^{29}-2 q^{27}+q^{25}-2 q^{23}+2 q^{21}-3 q^{19}+q^{17}-q^{15}+q^{13}+2 q^{11}+2 q^9+4 q^7-q^5+3 q^3-2 q+ q^{-1} -2 q^{-3} + q^{-5} - q^{-7} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{66}-2 q^{64}+4 q^{62}+q^{60}-8 q^{58}+4 q^{56}+11 q^{54}-6 q^{52}-8 q^{50}+12 q^{48}+9 q^{46}-18 q^{44}-10 q^{42}+14 q^{40}-6 q^{38}-22 q^{36}+8 q^{34}+10 q^{32}-18 q^{30}-2 q^{28}+15 q^{26}-3 q^{24}-9 q^{22}+17 q^{20}+19 q^{18}-9 q^{16}+2 q^{14}+22 q^{12}+q^{10}-16 q^8+5 q^6+7 q^4-8 q^2-8+2 q^{-2} +2 q^{-4} -4 q^{-6} - q^{-8} +3 q^{-10} - q^{-14} + q^{-16} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{38}+q^{36}-2 q^{34}-2 q^{28}+2 q^{26}-3 q^{24}+q^{22}-q^{20}+q^{16}+2 q^{14}+3 q^{12}+2 q^{10}+4 q^8-q^6+3 q^4-2 q^2-2 q^{-4} + q^{-6} - q^{-8} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{54}+2 q^{52}-4 q^{50}+8 q^{48}-12 q^{46}+16 q^{44}-23 q^{42}+25 q^{40}-26 q^{38}+23 q^{36}-16 q^{34}+9 q^{32}+3 q^{30}-16 q^{28}+30 q^{26}-42 q^{24}+47 q^{22}-50 q^{20}+47 q^{18}-42 q^{16}+32 q^{14}-16 q^{12}+6 q^{10}+9 q^8-14 q^6+24 q^4-26 q^2+25-23 q^{-2} +17 q^{-4} -12 q^{-6} +8 q^{-8} -5 q^{-10} +2 q^{-12} - q^{-14} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-2 q^{84}-2 q^{82}+2 q^{80}+6 q^{78}-9 q^{74}-6 q^{72}+9 q^{70}+17 q^{68}-3 q^{66}-23 q^{64}-10 q^{62}+21 q^{60}+22 q^{58}-12 q^{56}-28 q^{54}-3 q^{52}+25 q^{50}+12 q^{48}-19 q^{46}-17 q^{44}+11 q^{42}+17 q^{40}-7 q^{38}-18 q^{36}+q^{34}+17 q^{32}+2 q^{30}-17 q^{28}-6 q^{26}+18 q^{24}+14 q^{22}-14 q^{20}-16 q^{18}+13 q^{16}+28 q^{14}-q^{12}-26 q^{10}-12 q^8+23 q^6+21 q^4-10 q^2-23-4 q^{-2} +16 q^{-4} +9 q^{-6} -7 q^{-8} -10 q^{-10} - q^{-12} +6 q^{-14} +3 q^{-16} -2 q^{-18} -2 q^{-20} + q^{-24} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-2 q^{72}+2 q^{70}-4 q^{68}+7 q^{66}-9 q^{64}+11 q^{62}-13 q^{60}+19 q^{58}-20 q^{56}+20 q^{54}-19 q^{52}+19 q^{50}-17 q^{48}+6 q^{46}-7 q^{44}-q^{42}+8 q^{40}-21 q^{38}+22 q^{36}-29 q^{34}+37 q^{32}-38 q^{30}+36 q^{28}-38 q^{26}+38 q^{24}-27 q^{22}+26 q^{20}-17 q^{18}+15 q^{16}+4 q^{14}+10 q^{10}-14 q^8+20 q^6-20 q^4+18 q^2-22+17 q^{-2} -15 q^{-4} +10 q^{-6} -10 q^{-8} +7 q^{-10} -4 q^{-12} +3 q^{-14} -2 q^{-16} + q^{-18} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-2 q^{126}+4 q^{124}-7 q^{122}+7 q^{120}-6 q^{118}+12 q^{114}-22 q^{112}+35 q^{110}-42 q^{108}+35 q^{106}-15 q^{104}-25 q^{102}+72 q^{100}-108 q^{98}+118 q^{96}-88 q^{94}+18 q^{92}+74 q^{90}-153 q^{88}+184 q^{86}-149 q^{84}+53 q^{82}+55 q^{80}-142 q^{78}+160 q^{76}-106 q^{74}+11 q^{72}+92 q^{70}-143 q^{68}+115 q^{66}-28 q^{64}-92 q^{62}+180 q^{60}-204 q^{58}+150 q^{56}-38 q^{54}-94 q^{52}+208 q^{50}-252 q^{48}+218 q^{46}-117 q^{44}-25 q^{42}+148 q^{40}-206 q^{38}+189 q^{36}-98 q^{34}-12 q^{32}+112 q^{30}-142 q^{28}+98 q^{26}-2 q^{24}-100 q^{22}+159 q^{20}-140 q^{18}+58 q^{16}+52 q^{14}-136 q^{12}+176 q^{10}-149 q^8+80 q^6+3 q^4-78 q^2+111-107 q^{-2} +78 q^{-4} -34 q^{-6} -3 q^{-8} +28 q^{-10} -42 q^{-12} +39 q^{-14} -29 q^{-16} +15 q^{-18} -3 q^{-20} -6 q^{-22} +8 q^{-24} -8 q^{-26} +5 q^{-28} -2 q^{-30} + q^{-32} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 103"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+17 t-21+17 t^{-1} -8 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+4 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{5,t+1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+3 q-6+10 q^{-1} -11 q^{-2} +13 q^{-3} -12 q^{-4} +9 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-2 z^2 a^6-a^6+z^6 a^4+3 z^4 a^4+3 z^2 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+3 a^2-z^4-2 z^2-1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-2 z^3 a^9+3 z^6 a^8-6 z^4 a^8+z^2 a^8+5 z^7 a^7-12 z^5 a^7+10 z^3 a^7-4 z a^7+5 z^8 a^6-12 z^6 a^6+13 z^4 a^6-6 z^2 a^6+a^6+2 z^9 a^5+3 z^7 a^5-16 z^5 a^5+21 z^3 a^5-6 z a^5+9 z^8 a^4-23 z^6 a^4+25 z^4 a^4-8 z^2 a^4+2 z^9 a^3+2 z^7 a^3-9 z^5 a^3+9 z^3 a^3-2 z a^3+4 z^8 a^2-5 z^6 a^2+2 z^2 a^2-3 a^2+4 z^7 a-5 z^5 a-2 z^3 a+z a+3 z^6-6 z^4+3 z^2-1+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_40,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {10_40,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 103"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+17 t-21+17 t^{-1} -8 t^{-2} +2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+3 q-6+10 q^{-1} -11 q^{-2} +13 q^{-3} -12 q^{-4} +9 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_40,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_40,} |
Vassiliev invariants
| V2 and V3: | (3, -4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 103. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7-3 q^6+q^5+8 q^4-16 q^3+3 q^2+32 q-44-7 q^{-1} +78 q^{-2} -69 q^{-3} -35 q^{-4} +123 q^{-5} -75 q^{-6} -67 q^{-7} +141 q^{-8} -61 q^{-9} -81 q^{-10} +122 q^{-11} -30 q^{-12} -72 q^{-13} +75 q^{-14} -3 q^{-15} -46 q^{-16} +30 q^{-17} +6 q^{-18} -17 q^{-19} +7 q^{-20} +2 q^{-21} -3 q^{-22} + q^{-23} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{15}+3 q^{14}-q^{13}-3 q^{12}-2 q^{11}+10 q^{10}-20 q^8+2 q^7+40 q^6-76 q^4-17 q^3+130 q^2+58 q-190-129 q^{-1} +232 q^{-2} +247 q^{-3} -268 q^{-4} -362 q^{-5} +249 q^{-6} +505 q^{-7} -224 q^{-8} -603 q^{-9} +147 q^{-10} +705 q^{-11} -90 q^{-12} -742 q^{-13} - q^{-14} +769 q^{-15} +65 q^{-16} -739 q^{-17} -145 q^{-18} +688 q^{-19} +212 q^{-20} -602 q^{-21} -262 q^{-22} +482 q^{-23} +299 q^{-24} -355 q^{-25} -301 q^{-26} +225 q^{-27} +273 q^{-28} -115 q^{-29} -218 q^{-30} +35 q^{-31} +155 q^{-32} +4 q^{-33} -91 q^{-34} -20 q^{-35} +49 q^{-36} +15 q^{-37} -22 q^{-38} -8 q^{-39} +10 q^{-40} +2 q^{-41} -3 q^{-42} -2 q^{-43} +3 q^{-44} - q^{-45} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-3 q^{25}+q^{24}+3 q^{23}-3 q^{22}+8 q^{21}-13 q^{20}+4 q^{19}+10 q^{18}-22 q^{17}+23 q^{16}-31 q^{15}+37 q^{14}+51 q^{13}-87 q^{12}-11 q^{11}-118 q^{10}+139 q^9+266 q^8-89 q^7-145 q^6-530 q^5+104 q^4+745 q^3+349 q^2-49 q-1367-581 q^{-1} +1017 q^{-2} +1331 q^{-3} +904 q^{-4} -2048 q^{-5} -1988 q^{-6} +391 q^{-7} +2211 q^{-8} +2680 q^{-9} -1864 q^{-10} -3361 q^{-11} -1064 q^{-12} +2315 q^{-13} +4453 q^{-14} -909 q^{-15} -4017 q^{-16} -2574 q^{-17} +1732 q^{-18} +5532 q^{-19} +193 q^{-20} -3945 q^{-21} -3591 q^{-22} +902 q^{-23} +5841 q^{-24} +1109 q^{-25} -3391 q^{-26} -4083 q^{-27} -19 q^{-28} +5474 q^{-29} +1887 q^{-30} -2375 q^{-31} -4093 q^{-32} -1071 q^{-33} +4375 q^{-34} +2426 q^{-35} -908 q^{-36} -3412 q^{-37} -1987 q^{-38} +2599 q^{-39} +2318 q^{-40} +541 q^{-41} -2028 q^{-42} -2182 q^{-43} +794 q^{-44} +1428 q^{-45} +1195 q^{-46} -569 q^{-47} -1493 q^{-48} -198 q^{-49} +378 q^{-50} +908 q^{-51} +181 q^{-52} -592 q^{-53} -278 q^{-54} -124 q^{-55} +354 q^{-56} +216 q^{-57} -121 q^{-58} -77 q^{-59} -126 q^{-60} +74 q^{-61} +73 q^{-62} -20 q^{-63} +5 q^{-64} -39 q^{-65} +12 q^{-66} +14 q^{-67} -9 q^{-68} +5 q^{-69} -6 q^{-70} +3 q^{-71} +2 q^{-72} -3 q^{-73} + q^{-74} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{40}+3 q^{39}-q^{38}-3 q^{37}+3 q^{36}-3 q^{35}-5 q^{34}+9 q^{33}+6 q^{32}-6 q^{31}+11 q^{30}-5 q^{29}-31 q^{28}-12 q^{27}+8 q^{26}+27 q^{25}+72 q^{24}+56 q^{23}-65 q^{22}-174 q^{21}-161 q^{20}-q^{19}+298 q^{18}+459 q^{17}+219 q^{16}-385 q^{15}-899 q^{14}-761 q^{13}+192 q^{12}+1400 q^{11}+1756 q^{10}+564 q^9-1671 q^8-3127 q^7-2139 q^6+1184 q^5+4518 q^4+4662 q^3+529 q^2-5289 q-7834-3775 q^{-1} +4744 q^{-2} +10896 q^{-3} +8472 q^{-4} -2221 q^{-5} -13154 q^{-6} -14015 q^{-7} -2144 q^{-8} +13593 q^{-9} +19434 q^{-10} +8337 q^{-11} -12153 q^{-12} -23999 q^{-13} -15026 q^{-14} +8685 q^{-15} +26814 q^{-16} +21869 q^{-17} -4042 q^{-18} -28061 q^{-19} -27448 q^{-20} -1273 q^{-21} +27591 q^{-22} +31996 q^{-23} +6247 q^{-24} -26227 q^{-25} -34797 q^{-26} -10731 q^{-27} +24132 q^{-28} +36701 q^{-29} +14253 q^{-30} -21994 q^{-31} -37381 q^{-32} -17209 q^{-33} +19591 q^{-34} +37727 q^{-35} +19581 q^{-36} -17184 q^{-37} -37280 q^{-38} -21810 q^{-39} +14232 q^{-40} +36397 q^{-41} +23911 q^{-42} -10754 q^{-43} -34576 q^{-44} -25775 q^{-45} +6436 q^{-46} +31610 q^{-47} +27167 q^{-48} -1485 q^{-49} -27347 q^{-50} -27508 q^{-51} -3652 q^{-52} +21653 q^{-53} +26442 q^{-54} +8385 q^{-55} -15075 q^{-56} -23661 q^{-57} -11847 q^{-58} +8232 q^{-59} +19270 q^{-60} +13533 q^{-61} -2099 q^{-62} -13857 q^{-63} -13171 q^{-64} -2526 q^{-65} +8308 q^{-66} +11063 q^{-67} +5126 q^{-68} -3476 q^{-69} -7946 q^{-70} -5816 q^{-71} +105 q^{-72} +4713 q^{-73} +4988 q^{-74} +1705 q^{-75} -2036 q^{-76} -3525 q^{-77} -2172 q^{-78} +373 q^{-79} +1989 q^{-80} +1817 q^{-81} +431 q^{-82} -877 q^{-83} -1195 q^{-84} -581 q^{-85} +241 q^{-86} +640 q^{-87} +446 q^{-88} +5 q^{-89} -261 q^{-90} -266 q^{-91} -77 q^{-92} +109 q^{-93} +125 q^{-94} +36 q^{-95} -21 q^{-96} -41 q^{-97} -37 q^{-98} +12 q^{-99} +25 q^{-100} -2 q^{-101} -3 q^{-102} +3 q^{-103} -6 q^{-104} - q^{-105} +6 q^{-106} -3 q^{-107} -2 q^{-108} +3 q^{-109} - q^{-110} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




