10 104
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 104's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X16,4,17,3 X18,9,19,10 X14,7,15,8 X20,13,1,14 X8,17,9,18 X10,19,11,20 X12,6,13,5 X4,12,5,11 X2,16,3,15 |
Gauss code | 1, -10, 2, -9, 8, -1, 4, -6, 3, -7, 9, -8, 5, -4, 10, -2, 6, -3, 7, -5 |
Dowker-Thistlethwaite code | 6 16 12 14 18 4 20 2 8 10 |
Conway Notation | [3:20:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
![]() |
![]() [{5, 11}, {7, 12}, {8, 6}, {4, 7}, {3, 5}, {9, 4}, {10, 8}, {11, 9}, {2, 10}, {1, 3}, {12, 2}, {6, 1}] |
[edit Notes on presentations of 10 104]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_71,}
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 104. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|