10 39
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 39's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,18,10,19 X15,20,16,1 X19,16,20,17 X13,6,14,7 X17,8,18,9 |
Gauss code | -1, 4, -3, 1, -2, 9, -5, 10, -6, 3, -4, 2, -9, 5, -7, 8, -10, 6, -8, 7 |
Dowker-Thistlethwaite code | 4 10 12 14 18 2 6 20 8 16 |
Conway Notation | [22312] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{12, 4}, {3, 10}, {11, 5}, {4, 6}, {10, 12}, {5, 7}, {6, 8}, {7, 2}, {1, 3}, {2, 9}, {8, 11}, {9, 1}] |
[edit Notes on presentations of 10 39]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 39"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,18,10,19 X15,20,16,1 X19,16,20,17 X13,6,14,7 X17,8,18,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 9, -5, 10, -6, 3, -4, 2, -9, 5, -7, 8, -10, 6, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 14 18 2 6 20 8 16 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22312] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,-1,-2,1,-2,-2,-2,3,-2,3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {11, 5}, {4, 6}, {10, 12}, {5, 7}, {6, 8}, {7, 2}, {1, 3}, {2, 9}, {8, 11}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+8 t^2-13 t+15-13 t^{-1} +8 t^{-2} -2 t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-4 z^4+z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 61, -4 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8+2 z^2 a^8-z^6 a^6-3 z^4 a^6-2 z^2 a^6-z^6 a^4-3 z^4 a^4-2 z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+2 a^2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-4 z^3 a^{11}+z a^{11}+4 z^6 a^{10}-4 z^4 a^{10}+z^2 a^{10}+4 z^7 a^9-3 z^5 a^9-z^3 a^9+2 z a^9+3 z^8 a^8-2 z^6 a^8+z^2 a^8+z^9 a^7+4 z^7 a^7-9 z^5 a^7+4 z^3 a^7+5 z^8 a^6-10 z^6 a^6+5 z^4 a^6-z^2 a^6+z^9 a^5+2 z^7 a^5-9 z^5 a^5+5 z^3 a^5-z a^5+2 z^8 a^4-3 z^6 a^4-4 z^4 a^4+5 z^2 a^4-a^4+2 z^7 a^3-6 z^5 a^3+4 z^3 a^3+z^6 a^2-4 z^4 a^2+5 z^2 a^2-2 a^2} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}-q^{28}-2 q^{22}+2 q^{20}-q^{18}+q^{16}-2 q^{12}+2 q^{10}-q^8+2 q^6+q^4+1} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+4 q^{154}-2 q^{152}-4 q^{150}+12 q^{148}-17 q^{146}+22 q^{144}-22 q^{142}+12 q^{140}+3 q^{138}-21 q^{136}+38 q^{134}-49 q^{132}+50 q^{130}-37 q^{128}+11 q^{126}+26 q^{124}-56 q^{122}+77 q^{120}-70 q^{118}+44 q^{116}-7 q^{114}-37 q^{112}+60 q^{110}-59 q^{108}+33 q^{106}+9 q^{104}-43 q^{102}+49 q^{100}-29 q^{98}-16 q^{96}+61 q^{94}-92 q^{92}+84 q^{90}-45 q^{88}-16 q^{86}+83 q^{84}-119 q^{82}+121 q^{80}-83 q^{78}+20 q^{76}+43 q^{74}-88 q^{72}+100 q^{70}-77 q^{68}+32 q^{66}+22 q^{64}-56 q^{62}+58 q^{60}-32 q^{58}-13 q^{56}+50 q^{54}-69 q^{52}+51 q^{50}-12 q^{48}-38 q^{46}+82 q^{44}-92 q^{42}+72 q^{40}-28 q^{38}-23 q^{36}+59 q^{34}-72 q^{32}+65 q^{30}-37 q^{28}+8 q^{26}+18 q^{24}-30 q^{22}+31 q^{20}-21 q^{18}+12 q^{16}-q^{14}-4 q^{12}+6 q^{10}-5 q^8+4 q^6-q^4+q^2} |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}-2 q^{19}+2 q^{17}-3 q^{15}+2 q^{13}-q^9+2 q^7-2 q^5+3 q^3-q+ q^{-1} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-2 q^{56}-q^{54}+5 q^{52}-5 q^{50}-q^{48}+12 q^{46}-11 q^{44}-6 q^{42}+18 q^{40}-10 q^{38}-10 q^{36}+15 q^{34}-9 q^{30}+q^{28}+8 q^{26}-4 q^{24}-11 q^{22}+12 q^{20}+4 q^{18}-17 q^{16}+10 q^{14}+11 q^{12}-15 q^{10}+2 q^8+11 q^6-7 q^4-2 q^2+5- q^{-2} - q^{-4} + q^{-6} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{111}-2 q^{109}-q^{107}+2 q^{105}+3 q^{103}-2 q^{101}-4 q^{99}+6 q^{97}+q^{95}-11 q^{93}-3 q^{91}+22 q^{89}+5 q^{87}-35 q^{85}-12 q^{83}+50 q^{81}+25 q^{79}-59 q^{77}-43 q^{75}+60 q^{73}+58 q^{71}-51 q^{69}-65 q^{67}+29 q^{65}+69 q^{63}-7 q^{61}-58 q^{59}-16 q^{57}+43 q^{55}+36 q^{53}-27 q^{51}-52 q^{49}+10 q^{47}+62 q^{45}+6 q^{43}-69 q^{41}-23 q^{39}+68 q^{37}+42 q^{35}-64 q^{33}-56 q^{31}+49 q^{29}+67 q^{27}-29 q^{25}-71 q^{23}+7 q^{21}+66 q^{19}+12 q^{17}-49 q^{15}-23 q^{13}+32 q^{11}+29 q^9-17 q^7-22 q^5+4 q^3+16 q+ q^{-1} -8 q^{-3} -2 q^{-5} +4 q^{-7} + q^{-9} - q^{-11} - q^{-13} + q^{-15} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{180}-2 q^{178}-q^{176}+2 q^{174}+6 q^{170}-5 q^{168}-3 q^{166}+q^{164}-9 q^{162}+13 q^{160}-4 q^{158}+8 q^{156}+12 q^{154}-31 q^{152}-5 q^{150}-16 q^{148}+45 q^{146}+67 q^{144}-49 q^{142}-74 q^{140}-89 q^{138}+88 q^{136}+203 q^{134}+5 q^{132}-164 q^{130}-260 q^{128}+52 q^{126}+358 q^{124}+176 q^{122}-153 q^{120}-443 q^{118}-118 q^{116}+374 q^{114}+354 q^{112}+10 q^{110}-448 q^{108}-295 q^{106}+183 q^{104}+364 q^{102}+208 q^{100}-242 q^{98}-329 q^{96}-66 q^{94}+209 q^{92}+288 q^{90}+16 q^{88}-231 q^{86}-241 q^{84}+26 q^{82}+278 q^{80}+211 q^{78}-121 q^{76}-342 q^{74}-111 q^{72}+242 q^{70}+351 q^{68}-16 q^{66}-398 q^{64}-237 q^{62}+160 q^{60}+443 q^{58}+131 q^{56}-354 q^{54}-350 q^{52}-19 q^{50}+425 q^{48}+294 q^{46}-170 q^{44}-354 q^{42}-227 q^{40}+243 q^{38}+338 q^{36}+68 q^{34}-192 q^{32}-310 q^{30}+6 q^{28}+208 q^{26}+177 q^{24}+14 q^{22}-205 q^{20}-106 q^{18}+29 q^{16}+117 q^{14}+100 q^{12}-57 q^{10}-71 q^8-44 q^6+23 q^4+63 q^2+5-12 q^{-2} -27 q^{-4} -8 q^{-6} +18 q^{-8} +4 q^{-10} +3 q^{-12} -6 q^{-14} -4 q^{-16} +4 q^{-18} + q^{-22} - q^{-24} - q^{-26} + q^{-28} } |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}-q^{28}-2 q^{22}+2 q^{20}-q^{18}+q^{16}-2 q^{12}+2 q^{10}-q^8+2 q^6+q^4+1} |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-4 q^{82}+10 q^{80}-20 q^{78}+34 q^{76}-54 q^{74}+80 q^{72}-112 q^{70}+146 q^{68}-182 q^{66}+224 q^{64}-258 q^{62}+281 q^{60}-284 q^{58}+260 q^{56}-208 q^{54}+112 q^{52}+14 q^{50}-158 q^{48}+312 q^{46}-452 q^{44}+566 q^{42}-638 q^{40}+656 q^{38}-621 q^{36}+534 q^{34}-410 q^{32}+256 q^{30}-92 q^{28}-66 q^{26}+196 q^{24}-288 q^{22}+342 q^{20}-352 q^{18}+326 q^{16}-274 q^{14}+215 q^{12}-154 q^{10}+104 q^8-60 q^6+35 q^4-16 q^2+8-2 q^{-2} + q^{-4} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{76}-q^{74}-q^{72}+q^{64}+4 q^{62}-2 q^{60}-4 q^{58}+3 q^{56}+5 q^{54}-7 q^{52}-5 q^{50}+7 q^{48}+3 q^{46}-6 q^{44}-2 q^{42}+8 q^{40}-3 q^{38}-6 q^{36}+4 q^{34}+q^{32}-5 q^{30}+2 q^{28}+5 q^{26}-5 q^{24}-3 q^{22}+7 q^{20}+3 q^{18}-7 q^{16}-q^{14}+8 q^{12}-4 q^8+q^6+4 q^4+q^2-1+ q^{-4} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+4 q^{62}-6 q^{60}-q^{58}+10 q^{56}-8 q^{54}-5 q^{52}+16 q^{50}-7 q^{48}-8 q^{46}+13 q^{44}-4 q^{42}-7 q^{40}+4 q^{38}+3 q^{36}-3 q^{34}-6 q^{32}+7 q^{30}+3 q^{28}-13 q^{26}+6 q^{24}+8 q^{22}-14 q^{20}+4 q^{18}+8 q^{16}-9 q^{14}+5 q^{12}+5 q^{10}-3 q^8+3 q^6+2 q^4-q^2+1} |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{39}-q^{37}+q^{35}-2 q^{33}+q^{31}-2 q^{29}+2 q^{27}-q^{25}+q^{23}-q^{19}-2 q^{15}+2 q^{13}-q^{11}+3 q^9+2 q^5+q} |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{86}-q^{84}-2 q^{82}+3 q^{80}+2 q^{78}-6 q^{76}-2 q^{74}+7 q^{72}-8 q^{68}+2 q^{66}+10 q^{64}-4 q^{62}-7 q^{60}+9 q^{58}+4 q^{56}-9 q^{54}+3 q^{52}+8 q^{50}-7 q^{48}-6 q^{46}+7 q^{44}-q^{42}-12 q^{40}+q^{38}+10 q^{36}-6 q^{34}-8 q^{32}+8 q^{30}+3 q^{28}-7 q^{26}-q^{24}+5 q^{22}-q^{18}+3 q^{16}+4 q^{14}+q^{12}+2 q^{10}+3 q^8+q^6+q^2} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-q^{46}+q^{44}-q^{42}-q^{40}+q^{38}-2 q^{36}+2 q^{34}-q^{32}+q^{30}-q^{24}-q^{22}-2 q^{18}+2 q^{16}-q^{14}+3 q^{12}+q^{10}+q^8+2 q^6+q^2} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+4 q^{64}-6 q^{62}+8 q^{60}-11 q^{58}+14 q^{56}-16 q^{54}+15 q^{52}-14 q^{50}+9 q^{48}-4 q^{46}-3 q^{44}+12 q^{42}-19 q^{40}+26 q^{38}-29 q^{36}+31 q^{34}-30 q^{32}+25 q^{30}-19 q^{28}+11 q^{26}-4 q^{24}-4 q^{22}+10 q^{20}-14 q^{18}+16 q^{16}-15 q^{14}+15 q^{12}-11 q^{10}+9 q^8-5 q^6+4 q^4-q^2+1} |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 39"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+8 t^2-13 t+15-13 t^{-1} +8 t^{-2} -2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-4 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 61, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8+2 z^2 a^8-z^6 a^6-3 z^4 a^6-2 z^2 a^6-z^6 a^4-3 z^4 a^4-2 z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-4 z^3 a^{11}+z a^{11}+4 z^6 a^{10}-4 z^4 a^{10}+z^2 a^{10}+4 z^7 a^9-3 z^5 a^9-z^3 a^9+2 z a^9+3 z^8 a^8-2 z^6 a^8+z^2 a^8+z^9 a^7+4 z^7 a^7-9 z^5 a^7+4 z^3 a^7+5 z^8 a^6-10 z^6 a^6+5 z^4 a^6-z^2 a^6+z^9 a^5+2 z^7 a^5-9 z^5 a^5+5 z^3 a^5-z a^5+2 z^8 a^4-3 z^6 a^4-4 z^4 a^4+5 z^2 a^4-a^4+2 z^7 a^3-6 z^5 a^3+4 z^3 a^3+z^6 a^2-4 z^4 a^2+5 z^2 a^2-2 a^2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 39"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 39. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2-2 q+7 q^{-1} -9 q^{-2} -5 q^{-3} +25 q^{-4} -18 q^{-5} -22 q^{-6} +51 q^{-7} -19 q^{-8} -49 q^{-9} +72 q^{-10} -11 q^{-11} -72 q^{-12} +79 q^{-13} + q^{-14} -79 q^{-15} +69 q^{-16} +10 q^{-17} -64 q^{-18} +44 q^{-19} +10 q^{-20} -36 q^{-21} +20 q^{-22} +5 q^{-23} -13 q^{-24} +7 q^{-25} + q^{-26} -3 q^{-27} + q^{-28} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-2 q^5+2 q^3+4 q^2-8 q-6+11 q^{-1} +19 q^{-2} -20 q^{-3} -32 q^{-4} +16 q^{-5} +65 q^{-6} -17 q^{-7} -87 q^{-8} -10 q^{-9} +126 q^{-10} +37 q^{-11} -146 q^{-12} -88 q^{-13} +168 q^{-14} +133 q^{-15} -164 q^{-16} -193 q^{-17} +160 q^{-18} +239 q^{-19} -138 q^{-20} -284 q^{-21} +114 q^{-22} +314 q^{-23} -82 q^{-24} -336 q^{-25} +52 q^{-26} +339 q^{-27} -19 q^{-28} -329 q^{-29} -7 q^{-30} +297 q^{-31} +32 q^{-32} -253 q^{-33} -47 q^{-34} +203 q^{-35} +46 q^{-36} -144 q^{-37} -45 q^{-38} +100 q^{-39} +30 q^{-40} -60 q^{-41} -20 q^{-42} +38 q^{-43} +7 q^{-44} -20 q^{-45} -3 q^{-46} +13 q^{-47} - q^{-48} -8 q^{-49} +2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{11}+2 q^9-q^8+5 q^7-10 q^6-2 q^5+11 q^4+19 q^2-36 q-21+26 q^{-1} +17 q^{-2} +77 q^{-3} -76 q^{-4} -88 q^{-5} - q^{-6} +31 q^{-7} +234 q^{-8} -59 q^{-9} -176 q^{-10} -136 q^{-11} -68 q^{-12} +453 q^{-13} +104 q^{-14} -145 q^{-15} -338 q^{-16} -384 q^{-17} +571 q^{-18} +364 q^{-19} +125 q^{-20} -433 q^{-21} -854 q^{-22} +444 q^{-23} +548 q^{-24} +589 q^{-25} -302 q^{-26} -1298 q^{-27} +113 q^{-28} +544 q^{-29} +1074 q^{-30} +10 q^{-31} -1581 q^{-32} -284 q^{-33} +383 q^{-34} +1456 q^{-35} +377 q^{-36} -1690 q^{-37} -637 q^{-38} +152 q^{-39} +1677 q^{-40} +709 q^{-41} -1623 q^{-42} -889 q^{-43} -115 q^{-44} +1687 q^{-45} +956 q^{-46} -1351 q^{-47} -968 q^{-48} -390 q^{-49} +1424 q^{-50} +1043 q^{-51} -901 q^{-52} -812 q^{-53} -571 q^{-54} +946 q^{-55} +890 q^{-56} -443 q^{-57} -468 q^{-58} -551 q^{-59} +454 q^{-60} +565 q^{-61} -153 q^{-62} -139 q^{-63} -369 q^{-64} +148 q^{-65} +253 q^{-66} -57 q^{-67} +30 q^{-68} -171 q^{-69} +33 q^{-70} +76 q^{-71} -42 q^{-72} +55 q^{-73} -55 q^{-74} +11 q^{-75} +15 q^{-76} -31 q^{-77} +29 q^{-78} -12 q^{-79} +7 q^{-80} +3 q^{-81} -14 q^{-82} +7 q^{-83} -2 q^{-84} +3 q^{-85} + q^{-86} -3 q^{-87} + q^{-88} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|