10 23: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
m (Reverted edit of 165.228.133.11, changed back to last version by ScottTestRobot) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 23 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,6,-5,7,-8,9,-10,2,-3,4,-6,5,-9,8,-7,3/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=23|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,6,-5,7,-8,9,-10,2,-3,4,-6,5,-9,8,-7,3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_52]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_52]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 72: | Line 40: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{23}-2 q^{22}+5 q^{20}-8 q^{19}+17 q^{17}-22 q^{16}-3 q^{15}+41 q^{14}-42 q^{13}-14 q^{12}+70 q^{11}-54 q^{10}-29 q^9+87 q^8-51 q^7-38 q^6+81 q^5-35 q^4-38 q^3+57 q^2-14 q-28+28 q^{-1} - q^{-2} -14 q^{-3} +8 q^{-4} + q^{-5} -3 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-q^{45}+2 q^{44}-q^{42}-3 q^{41}+5 q^{40}+q^{39}-5 q^{38}-5 q^{37}+14 q^{36}+3 q^{35}-22 q^{34}-9 q^{33}+42 q^{32}+15 q^{31}-64 q^{30}-33 q^{29}+93 q^{28}+64 q^{27}-126 q^{26}-100 q^{25}+146 q^{24}+152 q^{23}-165 q^{22}-202 q^{21}+169 q^{20}+252 q^{19}-167 q^{18}-286 q^{17}+148 q^{16}+316 q^{15}-131 q^{14}-322 q^{13}+97 q^{12}+323 q^{11}-70 q^{10}-297 q^9+26 q^8+274 q^7+2 q^6-224 q^5-40 q^4+185 q^3+52 q^2-127 q-67+88 q^{-1} +60 q^{-2} -49 q^{-3} -50 q^{-4} +24 q^{-5} +35 q^{-6} -9 q^{-7} -22 q^{-8} +3 q^{-9} +11 q^{-10} - q^{-11} -4 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{23}-2 q^{22}+5 q^{20}-8 q^{19}+17 q^{17}-22 q^{16}-3 q^{15}+41 q^{14}-42 q^{13}-14 q^{12}+70 q^{11}-54 q^{10}-29 q^9+87 q^8-51 q^7-38 q^6+81 q^5-35 q^4-38 q^3+57 q^2-14 q-28+28 q^{-1} - q^{-2} -14 q^{-3} +8 q^{-4} + q^{-5} -3 q^{-6} + q^{-7} </math>|J3=<math>-q^{45}+2 q^{44}-q^{42}-3 q^{41}+5 q^{40}+q^{39}-5 q^{38}-5 q^{37}+14 q^{36}+3 q^{35}-22 q^{34}-9 q^{33}+42 q^{32}+15 q^{31}-64 q^{30}-33 q^{29}+93 q^{28}+64 q^{27}-126 q^{26}-100 q^{25}+146 q^{24}+152 q^{23}-165 q^{22}-202 q^{21}+169 q^{20}+252 q^{19}-167 q^{18}-286 q^{17}+148 q^{16}+316 q^{15}-131 q^{14}-322 q^{13}+97 q^{12}+323 q^{11}-70 q^{10}-297 q^9+26 q^8+274 q^7+2 q^6-224 q^5-40 q^4+185 q^3+52 q^2-127 q-67+88 q^{-1} +60 q^{-2} -49 q^{-3} -50 q^{-4} +24 q^{-5} +35 q^{-6} -9 q^{-7} -22 q^{-8} +3 q^{-9} +11 q^{-10} - q^{-11} -4 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} </math>|J4=<math>q^{74}-2 q^{73}+q^{71}-q^{70}+6 q^{69}-7 q^{68}+q^{67}+2 q^{66}-9 q^{65}+18 q^{64}-15 q^{63}+8 q^{62}+10 q^{61}-31 q^{60}+26 q^{59}-38 q^{58}+35 q^{57}+52 q^{56}-59 q^{55}+10 q^{54}-122 q^{53}+71 q^{52}+173 q^{51}-33 q^{50}-16 q^{49}-338 q^{48}+32 q^{47}+366 q^{46}+140 q^{45}+55 q^{44}-687 q^{43}-196 q^{42}+514 q^{41}+462 q^{40}+335 q^{39}-1028 q^{38}-600 q^{37}+480 q^{36}+797 q^{35}+793 q^{34}-1213 q^{33}-1024 q^{32}+275 q^{31}+999 q^{30}+1249 q^{29}-1207 q^{28}-1303 q^{27}+5 q^{26}+1024 q^{25}+1562 q^{24}-1055 q^{23}-1387 q^{22}-248 q^{21}+893 q^{20}+1683 q^{19}-785 q^{18}-1276 q^{17}-468 q^{16}+617 q^{15}+1612 q^{14}-425 q^{13}-980 q^{12}-612 q^{11}+238 q^{10}+1335 q^9-67 q^8-553 q^7-605 q^6-116 q^5+899 q^4+139 q^3-145 q^2-425 q-291+451 q^{-1} +145 q^{-2} +87 q^{-3} -192 q^{-4} -259 q^{-5} +157 q^{-6} +55 q^{-7} +118 q^{-8} -41 q^{-9} -139 q^{-10} +39 q^{-11} -3 q^{-12} +63 q^{-13} +4 q^{-14} -51 q^{-15} +12 q^{-16} -10 q^{-17} +19 q^{-18} +5 q^{-19} -14 q^{-20} +4 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math>|J5=<math>-q^{110}+2 q^{109}-q^{107}+q^{106}-2 q^{105}-4 q^{104}+5 q^{103}+3 q^{102}-2 q^{101}+6 q^{100}-3 q^{99}-16 q^{98}+2 q^{97}+7 q^{96}+2 q^{95}+22 q^{94}+7 q^{93}-31 q^{92}-24 q^{91}-12 q^{90}+3 q^{89}+62 q^{88}+62 q^{87}-12 q^{86}-78 q^{85}-113 q^{84}-66 q^{83}+108 q^{82}+225 q^{81}+152 q^{80}-73 q^{79}-341 q^{78}-373 q^{77}-13 q^{76}+470 q^{75}+645 q^{74}+264 q^{73}-518 q^{72}-1043 q^{71}-677 q^{70}+447 q^{69}+1435 q^{68}+1296 q^{67}-135 q^{66}-1779 q^{65}-2102 q^{64}-438 q^{63}+1989 q^{62}+2960 q^{61}+1289 q^{60}-1912 q^{59}-3843 q^{58}-2381 q^{57}+1622 q^{56}+4573 q^{55}+3543 q^{54}-997 q^{53}-5126 q^{52}-4747 q^{51}+248 q^{50}+5422 q^{49}+5807 q^{48}+633 q^{47}-5505 q^{46}-6700 q^{45}-1477 q^{44}+5383 q^{43}+7358 q^{42}+2295 q^{41}-5167 q^{40}-7803 q^{39}-2949 q^{38}+4802 q^{37}+8036 q^{36}+3566 q^{35}-4415 q^{34}-8118 q^{33}-3992 q^{32}+3882 q^{31}+7988 q^{30}+4446 q^{29}-3318 q^{28}-7724 q^{27}-4713 q^{26}+2576 q^{25}+7218 q^{24}+4999 q^{23}-1794 q^{22}-6551 q^{21}-5039 q^{20}+876 q^{19}+5623 q^{18}+5033 q^{17}-44 q^{16}-4570 q^{15}-4668 q^{14}-795 q^{13}+3370 q^{12}+4225 q^{11}+1345 q^{10}-2226 q^9-3433 q^8-1729 q^7+1136 q^6+2674 q^5+1758 q^4-336 q^3-1767 q^2-1601 q-248+1052 q^{-1} +1256 q^{-2} +501 q^{-3} -440 q^{-4} -874 q^{-5} -563 q^{-6} +80 q^{-7} +502 q^{-8} +477 q^{-9} +118 q^{-10} -242 q^{-11} -335 q^{-12} -162 q^{-13} +70 q^{-14} +194 q^{-15} +152 q^{-16} +5 q^{-17} -103 q^{-18} -102 q^{-19} -19 q^{-20} +35 q^{-21} +56 q^{-22} +32 q^{-23} -18 q^{-24} -35 q^{-25} -9 q^{-26} +8 q^{-27} +5 q^{-28} +12 q^{-29} +2 q^{-30} -14 q^{-31} - q^{-32} +6 q^{-33} - q^{-34} +3 q^{-36} -4 q^{-37} - q^{-38} +3 q^{-39} - q^{-40} </math>|J6=<math>q^{153}-2 q^{152}+q^{150}-q^{149}+2 q^{148}+6 q^{146}-9 q^{145}-3 q^{144}+4 q^{143}-7 q^{142}+5 q^{141}+4 q^{140}+26 q^{139}-21 q^{138}-14 q^{137}+7 q^{136}-27 q^{135}+14 q^{133}+80 q^{132}-26 q^{131}-30 q^{130}+6 q^{129}-81 q^{128}-42 q^{127}+18 q^{126}+201 q^{125}+17 q^{124}-17 q^{123}+9 q^{122}-224 q^{121}-208 q^{120}-55 q^{119}+409 q^{118}+220 q^{117}+184 q^{116}+134 q^{115}-498 q^{114}-715 q^{113}-507 q^{112}+527 q^{111}+653 q^{110}+952 q^{109}+899 q^{108}-586 q^{107}-1684 q^{106}-1970 q^{105}-260 q^{104}+775 q^{103}+2458 q^{102}+3250 q^{101}+771 q^{100}-2277 q^{99}-4655 q^{98}-3262 q^{97}-1227 q^{96}+3484 q^{95}+7381 q^{94}+5300 q^{93}-102 q^{92}-6893 q^{91}-8586 q^{90}-7429 q^{89}+1084 q^{88}+11113 q^{87}+12954 q^{86}+7100 q^{85}-5282 q^{84}-13580 q^{83}-17441 q^{82}-6965 q^{81}+10716 q^{80}+20597 q^{79}+18465 q^{78}+2210 q^{77}-14418 q^{76}-27630 q^{75}-19214 q^{74}+4499 q^{73}+24329 q^{72}+29944 q^{71}+13646 q^{70}-9826 q^{69}-34056 q^{68}-31338 q^{67}-5273 q^{66}+23073 q^{65}+37723 q^{64}+24760 q^{63}-2185 q^{62}-35722 q^{61}-39791 q^{60}-14694 q^{59}+18893 q^{58}+40962 q^{57}+32583 q^{56}+5219 q^{55}-34283 q^{54}-43984 q^{53}-21536 q^{52}+14213 q^{51}+41035 q^{50}+36931 q^{49}+10954 q^{48}-31401 q^{47}-45125 q^{46}-26050 q^{45}+9668 q^{44}+39080 q^{43}+38960 q^{42}+15662 q^{41}-27138 q^{40}-43968 q^{39}-29319 q^{38}+4319 q^{37}+34768 q^{36}+39083 q^{35}+20320 q^{34}-20434 q^{33}-39874 q^{32}-31363 q^{31}-2562 q^{30}+27008 q^{29}+36274 q^{28}+24452 q^{27}-10960 q^{26}-31701 q^{25}-30622 q^{24}-9790 q^{23}+15895 q^{22}+29167 q^{21}+25815 q^{20}-711 q^{19}-19866 q^{18}-25357 q^{17}-14301 q^{16}+4128 q^{15}+18301 q^{14}+22281 q^{13}+6499 q^{12}-7574 q^{11}-16143 q^{10}-13598 q^9-4053 q^8+7118 q^7+14566 q^6+8058 q^5+824 q^4-6573 q^3-8568 q^2-6308 q-208+6421 q^{-1} +5171 q^{-2} +3461 q^{-3} -523 q^{-4} -2972 q^{-5} -4304 q^{-6} -2388 q^{-7} +1378 q^{-8} +1551 q^{-9} +2352 q^{-10} +1220 q^{-11} +157 q^{-12} -1614 q^{-13} -1599 q^{-14} -176 q^{-15} -284 q^{-16} +703 q^{-17} +761 q^{-18} +781 q^{-19} -247 q^{-20} -509 q^{-21} -118 q^{-22} -487 q^{-23} -18 q^{-24} +153 q^{-25} +457 q^{-26} +23 q^{-27} -71 q^{-28} +73 q^{-29} -224 q^{-30} -87 q^{-31} -38 q^{-32} +170 q^{-33} - q^{-34} -15 q^{-35} +77 q^{-36} -59 q^{-37} -31 q^{-38} -32 q^{-39} +58 q^{-40} -12 q^{-41} -15 q^{-42} +31 q^{-43} -13 q^{-44} -5 q^{-45} -12 q^{-46} +21 q^{-47} -4 q^{-48} -10 q^{-49} +9 q^{-50} -3 q^{-51} -3 q^{-53} +4 q^{-54} + q^{-55} -3 q^{-56} + q^{-57} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{74}-2 q^{73}+q^{71}-q^{70}+6 q^{69}-7 q^{68}+q^{67}+2 q^{66}-9 q^{65}+18 q^{64}-15 q^{63}+8 q^{62}+10 q^{61}-31 q^{60}+26 q^{59}-38 q^{58}+35 q^{57}+52 q^{56}-59 q^{55}+10 q^{54}-122 q^{53}+71 q^{52}+173 q^{51}-33 q^{50}-16 q^{49}-338 q^{48}+32 q^{47}+366 q^{46}+140 q^{45}+55 q^{44}-687 q^{43}-196 q^{42}+514 q^{41}+462 q^{40}+335 q^{39}-1028 q^{38}-600 q^{37}+480 q^{36}+797 q^{35}+793 q^{34}-1213 q^{33}-1024 q^{32}+275 q^{31}+999 q^{30}+1249 q^{29}-1207 q^{28}-1303 q^{27}+5 q^{26}+1024 q^{25}+1562 q^{24}-1055 q^{23}-1387 q^{22}-248 q^{21}+893 q^{20}+1683 q^{19}-785 q^{18}-1276 q^{17}-468 q^{16}+617 q^{15}+1612 q^{14}-425 q^{13}-980 q^{12}-612 q^{11}+238 q^{10}+1335 q^9-67 q^8-553 q^7-605 q^6-116 q^5+899 q^4+139 q^3-145 q^2-425 q-291+451 q^{-1} +145 q^{-2} +87 q^{-3} -192 q^{-4} -259 q^{-5} +157 q^{-6} +55 q^{-7} +118 q^{-8} -41 q^{-9} -139 q^{-10} +39 q^{-11} -3 q^{-12} +63 q^{-13} +4 q^{-14} -51 q^{-15} +12 q^{-16} -10 q^{-17} +19 q^{-18} +5 q^{-19} -14 q^{-20} +4 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-q^{110}+2 q^{109}-q^{107}+q^{106}-2 q^{105}-4 q^{104}+5 q^{103}+3 q^{102}-2 q^{101}+6 q^{100}-3 q^{99}-16 q^{98}+2 q^{97}+7 q^{96}+2 q^{95}+22 q^{94}+7 q^{93}-31 q^{92}-24 q^{91}-12 q^{90}+3 q^{89}+62 q^{88}+62 q^{87}-12 q^{86}-78 q^{85}-113 q^{84}-66 q^{83}+108 q^{82}+225 q^{81}+152 q^{80}-73 q^{79}-341 q^{78}-373 q^{77}-13 q^{76}+470 q^{75}+645 q^{74}+264 q^{73}-518 q^{72}-1043 q^{71}-677 q^{70}+447 q^{69}+1435 q^{68}+1296 q^{67}-135 q^{66}-1779 q^{65}-2102 q^{64}-438 q^{63}+1989 q^{62}+2960 q^{61}+1289 q^{60}-1912 q^{59}-3843 q^{58}-2381 q^{57}+1622 q^{56}+4573 q^{55}+3543 q^{54}-997 q^{53}-5126 q^{52}-4747 q^{51}+248 q^{50}+5422 q^{49}+5807 q^{48}+633 q^{47}-5505 q^{46}-6700 q^{45}-1477 q^{44}+5383 q^{43}+7358 q^{42}+2295 q^{41}-5167 q^{40}-7803 q^{39}-2949 q^{38}+4802 q^{37}+8036 q^{36}+3566 q^{35}-4415 q^{34}-8118 q^{33}-3992 q^{32}+3882 q^{31}+7988 q^{30}+4446 q^{29}-3318 q^{28}-7724 q^{27}-4713 q^{26}+2576 q^{25}+7218 q^{24}+4999 q^{23}-1794 q^{22}-6551 q^{21}-5039 q^{20}+876 q^{19}+5623 q^{18}+5033 q^{17}-44 q^{16}-4570 q^{15}-4668 q^{14}-795 q^{13}+3370 q^{12}+4225 q^{11}+1345 q^{10}-2226 q^9-3433 q^8-1729 q^7+1136 q^6+2674 q^5+1758 q^4-336 q^3-1767 q^2-1601 q-248+1052 q^{-1} +1256 q^{-2} +501 q^{-3} -440 q^{-4} -874 q^{-5} -563 q^{-6} +80 q^{-7} +502 q^{-8} +477 q^{-9} +118 q^{-10} -242 q^{-11} -335 q^{-12} -162 q^{-13} +70 q^{-14} +194 q^{-15} +152 q^{-16} +5 q^{-17} -103 q^{-18} -102 q^{-19} -19 q^{-20} +35 q^{-21} +56 q^{-22} +32 q^{-23} -18 q^{-24} -35 q^{-25} -9 q^{-26} +8 q^{-27} +5 q^{-28} +12 q^{-29} +2 q^{-30} -14 q^{-31} - q^{-32} +6 q^{-33} - q^{-34} +3 q^{-36} -4 q^{-37} - q^{-38} +3 q^{-39} - q^{-40} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{153}-2 q^{152}+q^{150}-q^{149}+2 q^{148}+6 q^{146}-9 q^{145}-3 q^{144}+4 q^{143}-7 q^{142}+5 q^{141}+4 q^{140}+26 q^{139}-21 q^{138}-14 q^{137}+7 q^{136}-27 q^{135}+14 q^{133}+80 q^{132}-26 q^{131}-30 q^{130}+6 q^{129}-81 q^{128}-42 q^{127}+18 q^{126}+201 q^{125}+17 q^{124}-17 q^{123}+9 q^{122}-224 q^{121}-208 q^{120}-55 q^{119}+409 q^{118}+220 q^{117}+184 q^{116}+134 q^{115}-498 q^{114}-715 q^{113}-507 q^{112}+527 q^{111}+653 q^{110}+952 q^{109}+899 q^{108}-586 q^{107}-1684 q^{106}-1970 q^{105}-260 q^{104}+775 q^{103}+2458 q^{102}+3250 q^{101}+771 q^{100}-2277 q^{99}-4655 q^{98}-3262 q^{97}-1227 q^{96}+3484 q^{95}+7381 q^{94}+5300 q^{93}-102 q^{92}-6893 q^{91}-8586 q^{90}-7429 q^{89}+1084 q^{88}+11113 q^{87}+12954 q^{86}+7100 q^{85}-5282 q^{84}-13580 q^{83}-17441 q^{82}-6965 q^{81}+10716 q^{80}+20597 q^{79}+18465 q^{78}+2210 q^{77}-14418 q^{76}-27630 q^{75}-19214 q^{74}+4499 q^{73}+24329 q^{72}+29944 q^{71}+13646 q^{70}-9826 q^{69}-34056 q^{68}-31338 q^{67}-5273 q^{66}+23073 q^{65}+37723 q^{64}+24760 q^{63}-2185 q^{62}-35722 q^{61}-39791 q^{60}-14694 q^{59}+18893 q^{58}+40962 q^{57}+32583 q^{56}+5219 q^{55}-34283 q^{54}-43984 q^{53}-21536 q^{52}+14213 q^{51}+41035 q^{50}+36931 q^{49}+10954 q^{48}-31401 q^{47}-45125 q^{46}-26050 q^{45}+9668 q^{44}+39080 q^{43}+38960 q^{42}+15662 q^{41}-27138 q^{40}-43968 q^{39}-29319 q^{38}+4319 q^{37}+34768 q^{36}+39083 q^{35}+20320 q^{34}-20434 q^{33}-39874 q^{32}-31363 q^{31}-2562 q^{30}+27008 q^{29}+36274 q^{28}+24452 q^{27}-10960 q^{26}-31701 q^{25}-30622 q^{24}-9790 q^{23}+15895 q^{22}+29167 q^{21}+25815 q^{20}-711 q^{19}-19866 q^{18}-25357 q^{17}-14301 q^{16}+4128 q^{15}+18301 q^{14}+22281 q^{13}+6499 q^{12}-7574 q^{11}-16143 q^{10}-13598 q^9-4053 q^8+7118 q^7+14566 q^6+8058 q^5+824 q^4-6573 q^3-8568 q^2-6308 q-208+6421 q^{-1} +5171 q^{-2} +3461 q^{-3} -523 q^{-4} -2972 q^{-5} -4304 q^{-6} -2388 q^{-7} +1378 q^{-8} +1551 q^{-9} +2352 q^{-10} +1220 q^{-11} +157 q^{-12} -1614 q^{-13} -1599 q^{-14} -176 q^{-15} -284 q^{-16} +703 q^{-17} +761 q^{-18} +781 q^{-19} -247 q^{-20} -509 q^{-21} -118 q^{-22} -487 q^{-23} -18 q^{-24} +153 q^{-25} +457 q^{-26} +23 q^{-27} -71 q^{-28} +73 q^{-29} -224 q^{-30} -87 q^{-31} -38 q^{-32} +170 q^{-33} - q^{-34} -15 q^{-35} +77 q^{-36} -59 q^{-37} -31 q^{-38} -32 q^{-39} +58 q^{-40} -12 q^{-41} -15 q^{-42} +31 q^{-43} -13 q^{-44} -5 q^{-45} -12 q^{-46} +21 q^{-47} -4 q^{-48} -10 q^{-49} +9 q^{-50} -3 q^{-51} -3 q^{-53} +4 q^{-54} + q^{-55} -3 q^{-56} + q^{-57} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 23]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[13, 1, 14, 20], X[5, 15, 6, 14], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 23]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[13, 1, 14, 20], X[5, 15, 6, 14], |
|||
X[7, 17, 8, 16], X[15, 7, 16, 6], X[19, 9, 20, 8], X[9, 19, 10, 18], |
X[7, 17, 8, 16], X[15, 7, 16, 6], X[19, 9, 20, 8], X[9, 19, 10, 18], |
||
X[17, 11, 18, 10], X[11, 2, 12, 3]]</nowiki></ |
X[17, 11, 18, 10], X[11, 2, 12, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 23]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 23]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 6, -5, 7, -8, 9, -10, 2, -3, 4, -6, 5, -9, |
|||
8, -7, 3]</nowiki></ |
8, -7, 3]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 23]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 23]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 23]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 14, 16, 18, 2, 20, 6, 10, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 23]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, 2, 2, 2, 2, 3, -2, 3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 23]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_23_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 23]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 23]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 23]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 23]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_23_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 23]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 23]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 7 13 2 3 |
|||
-15 + -- - -- + -- + 13 t - 7 t + 2 t |
-15 + -- - -- + -- + 13 t - 7 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 23]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 23]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 3 z + 5 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 23]], KnotSignature[Knot[10, 23]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{59, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 23], Knot[10, 52]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 23]], KnotSignature[Knot[10, 23]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{59, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 23]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 3 4 5 6 7 8 |
|||
-5 - q + - + 8 q - 9 q + 10 q - 9 q + 7 q - 4 q + 2 q - q |
-5 - q + - + 8 q - 9 q + 10 q - 9 q + 7 q - 4 q + 2 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 23]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 23]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 23]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -4 2 4 6 10 12 14 16 18 |
|||
-q + q + 2 q - 2 q + 2 q + q + 2 q - q + 2 q - q - |
-q + q + 2 q - 2 q + 2 q + q + 2 q - q + 2 q - q - |
||
20 24 |
20 24 |
||
q - q</nowiki></ |
q - q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 23]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 23]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 6 6 |
|||
-2 3 2 3 z 6 z 2 z 4 z 4 z 3 z z z |
-2 3 2 3 z 6 z 2 z 4 z 4 z 3 z z z |
||
-- + -- - 2 z - ---- + ---- + ---- - z - -- + ---- + ---- + -- + -- |
-- + -- - 2 z - ---- + ---- + ---- - z - -- + ---- + ---- + -- + -- |
||
6 4 6 4 2 6 4 2 4 2 |
6 4 6 4 2 6 4 2 4 2 |
||
a a a a a a a a a a</nowiki></ |
a a a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 23]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 23]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
2 3 2 z z 2 z 2 z z 2 3 z 6 z 13 z z |
2 3 2 z z 2 z 2 z z 2 3 z 6 z 13 z z |
||
-- + -- + --- + -- - --- - --- - - + 3 z + ---- - ---- - ----- - -- - |
-- + -- + --- + -- - --- - --- - - + 3 z + ---- - ---- - ----- - -- - |
||
Line 181: | Line 223: | ||
-- + -- |
-- + -- |
||
5 3 |
5 3 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 23]], Vassiliev[3][Knot[10, 23]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 23]], Vassiliev[3][Knot[10, 23]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 23]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 5}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 23]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 3 2 q 3 5 |
|||
5 q + 4 q + ----- + ----- + ---- + --- + --- + 5 q t + 4 q t + |
5 q + 4 q + ----- + ----- + ---- + --- + --- + 5 q t + 4 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 196: | Line 246: | ||
13 5 13 6 15 6 17 7 |
13 5 13 6 15 6 17 7 |
||
3 q t + q t + q t + q t</nowiki></ |
3 q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 23], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 23], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 -5 8 14 -2 28 2 3 |
|||
-28 + q - -- + q + -- - -- - q + -- - 14 q + 57 q - 38 q - |
-28 + q - -- + q + -- - -- - q + -- - 14 q + 57 q - 38 q - |
||
6 4 3 q |
6 4 3 q |
||
Line 211: | Line 265: | ||
22 23 |
22 23 |
||
2 q + q</nowiki></ |
2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 13:52, 9 March 2007
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 23's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X13,1,14,20 X5,15,6,14 X7,17,8,16 X15,7,16,6 X19,9,20,8 X9,19,10,18 X17,11,18,10 X11,2,12,3 |
Gauss code | -1, 10, -2, 1, -4, 6, -5, 7, -8, 9, -10, 2, -3, 4, -6, 5, -9, 8, -7, 3 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 20 6 10 8 |
Conway Notation | [33112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 7}, {1, 10}, {8, 11}, {10, 12}, {11, 6}, {7, 5}, {6, 4}, {5, 2}, {3, 1}, {4, 9}, {2, 8}, {9, 3}] |
[edit Notes on presentations of 10 23]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 23"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X13,1,14,20 X5,15,6,14 X7,17,8,16 X15,7,16,6 X19,9,20,8 X9,19,10,18 X17,11,18,10 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 6, -5, 7, -8, 9, -10, 2, -3, 4, -6, 5, -9, 8, -7, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 14 16 18 2 20 6 10 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[33112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 7}, {1, 10}, {8, 11}, {10, 12}, {11, 6}, {7, 5}, {6, 4}, {5, 2}, {3, 1}, {4, 9}, {2, 8}, {9, 3}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 23"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 59, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_52,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 23"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_52,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, 5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 23. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|