9 25: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 25 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,7,-8,3,-5,6,-7,4,-6,5/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=25|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,7,-8,3,-5,6,-7,4,-6,5/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 27: | Line 15: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = [[K11n134]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = [[K11n25]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n134]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[K11n25]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 73: | Line 40: | ||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^4-2 q^3+q^2+5 q-11+4 q^{-1} +19 q^{-2} -31 q^{-3} +4 q^{-4} +43 q^{-5} -50 q^{-6} -3 q^{-7} +62 q^{-8} -56 q^{-9} -12 q^{-10} +65 q^{-11} -45 q^{-12} -19 q^{-13} +52 q^{-14} -25 q^{-15} -20 q^{-16} +30 q^{-17} -7 q^{-18} -12 q^{-19} +10 q^{-20} -3 q^{-22} + q^{-23} </math> | |
|||
coloured_jones_3 = <math>q^9-2 q^8+q^7+q^6+q^5-7 q^4+4 q^3+11 q^2-5 q-28+14 q^{-1} +46 q^{-2} -8 q^{-3} -87 q^{-4} +10 q^{-5} +121 q^{-6} +11 q^{-7} -167 q^{-8} -34 q^{-9} +204 q^{-10} +67 q^{-11} -234 q^{-12} -98 q^{-13} +248 q^{-14} +130 q^{-15} -251 q^{-16} -155 q^{-17} +240 q^{-18} +173 q^{-19} -218 q^{-20} -184 q^{-21} +185 q^{-22} +188 q^{-23} -145 q^{-24} -184 q^{-25} +101 q^{-26} +173 q^{-27} -60 q^{-28} -148 q^{-29} +20 q^{-30} +120 q^{-31} +6 q^{-32} -87 q^{-33} -20 q^{-34} +55 q^{-35} +23 q^{-36} -29 q^{-37} -20 q^{-38} +14 q^{-39} +12 q^{-40} -5 q^{-41} -5 q^{-42} +3 q^{-44} - q^{-45} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^4-2 q^3+q^2+5 q-11+4 q^{-1} +19 q^{-2} -31 q^{-3} +4 q^{-4} +43 q^{-5} -50 q^{-6} -3 q^{-7} +62 q^{-8} -56 q^{-9} -12 q^{-10} +65 q^{-11} -45 q^{-12} -19 q^{-13} +52 q^{-14} -25 q^{-15} -20 q^{-16} +30 q^{-17} -7 q^{-18} -12 q^{-19} +10 q^{-20} -3 q^{-22} + q^{-23} </math>|J3=<math>q^9-2 q^8+q^7+q^6+q^5-7 q^4+4 q^3+11 q^2-5 q-28+14 q^{-1} +46 q^{-2} -8 q^{-3} -87 q^{-4} +10 q^{-5} +121 q^{-6} +11 q^{-7} -167 q^{-8} -34 q^{-9} +204 q^{-10} +67 q^{-11} -234 q^{-12} -98 q^{-13} +248 q^{-14} +130 q^{-15} -251 q^{-16} -155 q^{-17} +240 q^{-18} +173 q^{-19} -218 q^{-20} -184 q^{-21} +185 q^{-22} +188 q^{-23} -145 q^{-24} -184 q^{-25} +101 q^{-26} +173 q^{-27} -60 q^{-28} -148 q^{-29} +20 q^{-30} +120 q^{-31} +6 q^{-32} -87 q^{-33} -20 q^{-34} +55 q^{-35} +23 q^{-36} -29 q^{-37} -20 q^{-38} +14 q^{-39} +12 q^{-40} -5 q^{-41} -5 q^{-42} +3 q^{-44} - q^{-45} </math>|J4=<math>q^{16}-2 q^{15}+q^{14}+q^{13}-3 q^{12}+5 q^{11}-7 q^{10}+6 q^9+6 q^8-17 q^7+8 q^6-17 q^5+33 q^4+33 q^3-59 q^2-23 q-57+113 q^{-1} +145 q^{-2} -104 q^{-3} -133 q^{-4} -223 q^{-5} +215 q^{-6} +416 q^{-7} -43 q^{-8} -287 q^{-9} -588 q^{-10} +216 q^{-11} +784 q^{-12} +204 q^{-13} -347 q^{-14} -1067 q^{-15} +38 q^{-16} +1077 q^{-17} +553 q^{-18} -244 q^{-19} -1456 q^{-20} -235 q^{-21} +1174 q^{-22} +837 q^{-23} -32 q^{-24} -1631 q^{-25} -477 q^{-26} +1088 q^{-27} +974 q^{-28} +198 q^{-29} -1587 q^{-30} -637 q^{-31} +861 q^{-32} +974 q^{-33} +421 q^{-34} -1361 q^{-35} -725 q^{-36} +526 q^{-37} +850 q^{-38} +617 q^{-39} -977 q^{-40} -715 q^{-41} +140 q^{-42} +597 q^{-43} +712 q^{-44} -516 q^{-45} -559 q^{-46} -155 q^{-47} +266 q^{-48} +615 q^{-49} -134 q^{-50} -293 q^{-51} -243 q^{-52} +2 q^{-53} +373 q^{-54} +40 q^{-55} -67 q^{-56} -158 q^{-57} -90 q^{-58} +146 q^{-59} +46 q^{-60} +23 q^{-61} -53 q^{-62} -61 q^{-63} +35 q^{-64} +12 q^{-65} +20 q^{-66} -7 q^{-67} -19 q^{-68} +5 q^{-69} +5 q^{-71} -3 q^{-73} + q^{-74} </math>|J5=<math>q^{25}-2 q^{24}+q^{23}+q^{22}-3 q^{21}+q^{20}+5 q^{19}-5 q^{18}+q^{17}+4 q^{16}-12 q^{15}-3 q^{14}+18 q^{13}+4 q^{12}+9 q^{11}-3 q^{10}-48 q^9-39 q^8+34 q^7+81 q^6+91 q^5+3 q^4-182 q^3-226 q^2-33 q+261+448 q^{-1} +221 q^{-2} -379 q^{-3} -782 q^{-4} -504 q^{-5} +347 q^{-6} +1199 q^{-7} +1083 q^{-8} -245 q^{-9} -1645 q^{-10} -1763 q^{-11} -188 q^{-12} +2009 q^{-13} +2710 q^{-14} +801 q^{-15} -2245 q^{-16} -3608 q^{-17} -1711 q^{-18} +2213 q^{-19} +4540 q^{-20} +2724 q^{-21} -1967 q^{-22} -5262 q^{-23} -3790 q^{-24} +1500 q^{-25} +5784 q^{-26} +4773 q^{-27} -920 q^{-28} -6046 q^{-29} -5602 q^{-30} +289 q^{-31} +6106 q^{-32} +6206 q^{-33} +325 q^{-34} -5975 q^{-35} -6615 q^{-36} -884 q^{-37} +5728 q^{-38} +6824 q^{-39} +1369 q^{-40} -5355 q^{-41} -6884 q^{-42} -1814 q^{-43} +4896 q^{-44} +6809 q^{-45} +2224 q^{-46} -4328 q^{-47} -6602 q^{-48} -2625 q^{-49} +3640 q^{-50} +6267 q^{-51} +3003 q^{-52} -2837 q^{-53} -5780 q^{-54} -3320 q^{-55} +1944 q^{-56} +5103 q^{-57} +3543 q^{-58} -1002 q^{-59} -4285 q^{-60} -3580 q^{-61} +116 q^{-62} +3314 q^{-63} +3398 q^{-64} +662 q^{-65} -2310 q^{-66} -3008 q^{-67} -1176 q^{-68} +1331 q^{-69} +2422 q^{-70} +1442 q^{-71} -512 q^{-72} -1754 q^{-73} -1427 q^{-74} -79 q^{-75} +1094 q^{-76} +1215 q^{-77} +402 q^{-78} -532 q^{-79} -895 q^{-80} -515 q^{-81} +157 q^{-82} +564 q^{-83} +457 q^{-84} +53 q^{-85} -283 q^{-86} -340 q^{-87} -134 q^{-88} +115 q^{-89} +209 q^{-90} +119 q^{-91} -19 q^{-92} -98 q^{-93} -94 q^{-94} -16 q^{-95} +49 q^{-96} +50 q^{-97} +12 q^{-98} -9 q^{-99} -21 q^{-100} -20 q^{-101} +7 q^{-102} +12 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} </math>|J6=<math>q^{36}-2 q^{35}+q^{34}+q^{33}-3 q^{32}+q^{31}+q^{30}+7 q^{29}-10 q^{28}-q^{27}+9 q^{26}-13 q^{25}+q^{24}+9 q^{23}+28 q^{22}-24 q^{21}-19 q^{20}+13 q^{19}-46 q^{18}-4 q^{17}+51 q^{16}+119 q^{15}-15 q^{14}-69 q^{13}-52 q^{12}-220 q^{11}-82 q^{10}+166 q^9+468 q^8+248 q^7-36 q^6-281 q^5-904 q^4-671 q^3+129 q^2+1296 q+1406+843 q^{-1} -286 q^{-2} -2463 q^{-3} -2814 q^{-4} -1280 q^{-5} +2022 q^{-6} +3948 q^{-7} +4080 q^{-8} +1692 q^{-9} -3997 q^{-10} -7111 q^{-11} -6048 q^{-12} +341 q^{-13} +6591 q^{-14} +10268 q^{-15} +7942 q^{-16} -2671 q^{-17} -11812 q^{-18} -14534 q^{-19} -6166 q^{-20} +6068 q^{-21} +17110 q^{-22} +18345 q^{-23} +3858 q^{-24} -13313 q^{-25} -23788 q^{-26} -16818 q^{-27} +302 q^{-28} +20740 q^{-29} +29289 q^{-30} +14325 q^{-31} -9763 q^{-32} -29726 q^{-33} -27651 q^{-34} -8996 q^{-35} +19526 q^{-36} +36660 q^{-37} +24647 q^{-38} -2982 q^{-39} -30850 q^{-40} -34893 q^{-41} -17980 q^{-42} +15180 q^{-43} +39209 q^{-44} +31596 q^{-45} +3769 q^{-46} -28659 q^{-47} -37739 q^{-48} -24145 q^{-49} +10297 q^{-50} +38309 q^{-51} +34815 q^{-52} +8783 q^{-53} -25138 q^{-54} -37536 q^{-55} -27577 q^{-56} +5901 q^{-57} +35503 q^{-58} +35603 q^{-59} +12527 q^{-60} -20802 q^{-61} -35488 q^{-62} -29521 q^{-63} +1281 q^{-64} +30969 q^{-65} +34848 q^{-66} +16129 q^{-67} -14860 q^{-68} -31473 q^{-69} -30505 q^{-70} -4448 q^{-71} +23891 q^{-72} +32060 q^{-73} +19627 q^{-74} -6779 q^{-75} -24549 q^{-76} -29514 q^{-77} -10684 q^{-78} +14058 q^{-79} +25993 q^{-80} +21279 q^{-81} +2141 q^{-82} -14620 q^{-83} -24835 q^{-84} -14902 q^{-85} +3352 q^{-86} +16539 q^{-87} +18845 q^{-88} +8669 q^{-89} -3934 q^{-90} -16341 q^{-91} -14471 q^{-92} -4504 q^{-93} +6245 q^{-94} +12251 q^{-95} +10001 q^{-96} +3585 q^{-97} -6897 q^{-98} -9567 q^{-99} -6822 q^{-100} -880 q^{-101} +4656 q^{-102} +6712 q^{-103} +5644 q^{-104} -498 q^{-105} -3620 q^{-106} -4667 q^{-107} -2986 q^{-108} -165 q^{-109} +2389 q^{-110} +3804 q^{-111} +1480 q^{-112} -58 q^{-113} -1619 q^{-114} -1905 q^{-115} -1366 q^{-116} -17 q^{-117} +1418 q^{-118} +950 q^{-119} +732 q^{-120} -54 q^{-121} -510 q^{-122} -820 q^{-123} -452 q^{-124} +252 q^{-125} +207 q^{-126} +391 q^{-127} +194 q^{-128} +39 q^{-129} -248 q^{-130} -225 q^{-131} +3 q^{-132} -31 q^{-133} +92 q^{-134} +80 q^{-135} +76 q^{-136} -45 q^{-137} -57 q^{-138} - q^{-139} -29 q^{-140} +9 q^{-141} +12 q^{-142} +29 q^{-143} -7 q^{-144} -12 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} </math>|J7=<math>q^{49}-2 q^{48}+q^{47}+q^{46}-3 q^{45}+q^{44}+q^{43}+3 q^{42}+2 q^{41}-12 q^{40}+4 q^{39}+8 q^{38}-9 q^{37}+2 q^{36}+2 q^{35}+15 q^{34}+8 q^{33}-47 q^{32}-4 q^{31}+20 q^{30}-8 q^{29}+23 q^{28}+17 q^{27}+58 q^{26}+23 q^{25}-143 q^{24}-96 q^{23}-36 q^{22}-9 q^{21}+152 q^{20}+191 q^{19}+277 q^{18}+144 q^{17}-377 q^{16}-540 q^{15}-567 q^{14}-327 q^{13}+414 q^{12}+954 q^{11}+1430 q^{10}+1109 q^9-402 q^8-1739 q^7-2768 q^6-2573 q^5-380 q^4+2316 q^3+5012 q^2+5548 q+2388-2370 q^{-1} -7721 q^{-2} -10214 q^{-3} -6877 q^{-4} +623 q^{-5} +10484 q^{-6} +16861 q^{-7} +14375 q^{-8} +4244 q^{-9} -11540 q^{-10} -24697 q^{-11} -25884 q^{-12} -13868 q^{-13} +9592 q^{-14} +32412 q^{-15} +40381 q^{-16} +28983 q^{-17} -1848 q^{-18} -37526 q^{-19} -57242 q^{-20} -49960 q^{-21} -12323 q^{-22} +38102 q^{-23} +73166 q^{-24} +74995 q^{-25} +34149 q^{-26} -31469 q^{-27} -86279 q^{-28} -102321 q^{-29} -61840 q^{-30} +17521 q^{-31} +93437 q^{-32} +128109 q^{-33} +93677 q^{-34} +3851 q^{-35} -93581 q^{-36} -150173 q^{-37} -126202 q^{-38} -30131 q^{-39} +86429 q^{-40} +165930 q^{-41} +156317 q^{-42} +58993 q^{-43} -73228 q^{-44} -174769 q^{-45} -181702 q^{-46} -87249 q^{-47} +56185 q^{-48} +176989 q^{-49} +200831 q^{-50} +112483 q^{-51} -37527 q^{-52} -173938 q^{-53} -213557 q^{-54} -133252 q^{-55} +19431 q^{-56} +167410 q^{-57} +220610 q^{-58} +149010 q^{-59} -3390 q^{-60} -159021 q^{-61} -223169 q^{-62} -160099 q^{-63} -10179 q^{-64} +150009 q^{-65} +222740 q^{-66} +167515 q^{-67} +21258 q^{-68} -141101 q^{-69} -220251 q^{-70} -172291 q^{-71} -30665 q^{-72} +132140 q^{-73} +216507 q^{-74} +175603 q^{-75} +39315 q^{-76} -122795 q^{-77} -211642 q^{-78} -178042 q^{-79} -48156 q^{-80} +112108 q^{-81} +205276 q^{-82} +180019 q^{-83} +58062 q^{-84} -99274 q^{-85} -196848 q^{-86} -181260 q^{-87} -69252 q^{-88} +83491 q^{-89} +185321 q^{-90} +181081 q^{-91} +81626 q^{-92} -64344 q^{-93} -169860 q^{-94} -178470 q^{-95} -94293 q^{-96} +42096 q^{-97} +149911 q^{-98} +172010 q^{-99} +105726 q^{-100} -17597 q^{-101} -125246 q^{-102} -160638 q^{-103} -114329 q^{-104} -7281 q^{-105} +96865 q^{-106} +143639 q^{-107} +117833 q^{-108} +30299 q^{-109} -66111 q^{-110} -121194 q^{-111} -115123 q^{-112} -49018 q^{-113} +35809 q^{-114} +94658 q^{-115} +105401 q^{-116} +61050 q^{-117} -8534 q^{-118} -66080 q^{-119} -89559 q^{-120} -65447 q^{-121} -12985 q^{-122} +38731 q^{-123} +69413 q^{-124} +62059 q^{-125} +26964 q^{-126} -15169 q^{-127} -47756 q^{-128} -52635 q^{-129} -33026 q^{-130} -2300 q^{-131} +27660 q^{-132} +39557 q^{-133} +32200 q^{-134} +12759 q^{-135} -11470 q^{-136} -25676 q^{-137} -26572 q^{-138} -16839 q^{-139} +373 q^{-140} +13644 q^{-141} +18824 q^{-142} +16002 q^{-143} +5406 q^{-144} -4743 q^{-145} -11038 q^{-146} -12491 q^{-147} -7209 q^{-148} -564 q^{-149} +5046 q^{-150} +8191 q^{-151} +6327 q^{-152} +2770 q^{-153} -1113 q^{-154} -4371 q^{-155} -4446 q^{-156} -3090 q^{-157} -820 q^{-158} +1866 q^{-159} +2551 q^{-160} +2323 q^{-161} +1311 q^{-162} -374 q^{-163} -1079 q^{-164} -1465 q^{-165} -1226 q^{-166} -177 q^{-167} +368 q^{-168} +717 q^{-169} +757 q^{-170} +279 q^{-171} +71 q^{-172} -258 q^{-173} -484 q^{-174} -237 q^{-175} -99 q^{-176} +92 q^{-177} +198 q^{-178} +94 q^{-179} +115 q^{-180} +37 q^{-181} -100 q^{-182} -75 q^{-183} -62 q^{-184} -4 q^{-185} +42 q^{-186} -3 q^{-187} +29 q^{-188} +29 q^{-189} -9 q^{-190} -12 q^{-191} -20 q^{-192} -2 q^{-193} +12 q^{-194} -5 q^{-195} +7 q^{-197} -5 q^{-200} +3 q^{-202} - q^{-203} </math>}} |
|||
coloured_jones_4 = <math>q^{16}-2 q^{15}+q^{14}+q^{13}-3 q^{12}+5 q^{11}-7 q^{10}+6 q^9+6 q^8-17 q^7+8 q^6-17 q^5+33 q^4+33 q^3-59 q^2-23 q-57+113 q^{-1} +145 q^{-2} -104 q^{-3} -133 q^{-4} -223 q^{-5} +215 q^{-6} +416 q^{-7} -43 q^{-8} -287 q^{-9} -588 q^{-10} +216 q^{-11} +784 q^{-12} +204 q^{-13} -347 q^{-14} -1067 q^{-15} +38 q^{-16} +1077 q^{-17} +553 q^{-18} -244 q^{-19} -1456 q^{-20} -235 q^{-21} +1174 q^{-22} +837 q^{-23} -32 q^{-24} -1631 q^{-25} -477 q^{-26} +1088 q^{-27} +974 q^{-28} +198 q^{-29} -1587 q^{-30} -637 q^{-31} +861 q^{-32} +974 q^{-33} +421 q^{-34} -1361 q^{-35} -725 q^{-36} +526 q^{-37} +850 q^{-38} +617 q^{-39} -977 q^{-40} -715 q^{-41} +140 q^{-42} +597 q^{-43} +712 q^{-44} -516 q^{-45} -559 q^{-46} -155 q^{-47} +266 q^{-48} +615 q^{-49} -134 q^{-50} -293 q^{-51} -243 q^{-52} +2 q^{-53} +373 q^{-54} +40 q^{-55} -67 q^{-56} -158 q^{-57} -90 q^{-58} +146 q^{-59} +46 q^{-60} +23 q^{-61} -53 q^{-62} -61 q^{-63} +35 q^{-64} +12 q^{-65} +20 q^{-66} -7 q^{-67} -19 q^{-68} +5 q^{-69} +5 q^{-71} -3 q^{-73} + q^{-74} </math> | |
|||
coloured_jones_5 = <math>q^{25}-2 q^{24}+q^{23}+q^{22}-3 q^{21}+q^{20}+5 q^{19}-5 q^{18}+q^{17}+4 q^{16}-12 q^{15}-3 q^{14}+18 q^{13}+4 q^{12}+9 q^{11}-3 q^{10}-48 q^9-39 q^8+34 q^7+81 q^6+91 q^5+3 q^4-182 q^3-226 q^2-33 q+261+448 q^{-1} +221 q^{-2} -379 q^{-3} -782 q^{-4} -504 q^{-5} +347 q^{-6} +1199 q^{-7} +1083 q^{-8} -245 q^{-9} -1645 q^{-10} -1763 q^{-11} -188 q^{-12} +2009 q^{-13} +2710 q^{-14} +801 q^{-15} -2245 q^{-16} -3608 q^{-17} -1711 q^{-18} +2213 q^{-19} +4540 q^{-20} +2724 q^{-21} -1967 q^{-22} -5262 q^{-23} -3790 q^{-24} +1500 q^{-25} +5784 q^{-26} +4773 q^{-27} -920 q^{-28} -6046 q^{-29} -5602 q^{-30} +289 q^{-31} +6106 q^{-32} +6206 q^{-33} +325 q^{-34} -5975 q^{-35} -6615 q^{-36} -884 q^{-37} +5728 q^{-38} +6824 q^{-39} +1369 q^{-40} -5355 q^{-41} -6884 q^{-42} -1814 q^{-43} +4896 q^{-44} +6809 q^{-45} +2224 q^{-46} -4328 q^{-47} -6602 q^{-48} -2625 q^{-49} +3640 q^{-50} +6267 q^{-51} +3003 q^{-52} -2837 q^{-53} -5780 q^{-54} -3320 q^{-55} +1944 q^{-56} +5103 q^{-57} +3543 q^{-58} -1002 q^{-59} -4285 q^{-60} -3580 q^{-61} +116 q^{-62} +3314 q^{-63} +3398 q^{-64} +662 q^{-65} -2310 q^{-66} -3008 q^{-67} -1176 q^{-68} +1331 q^{-69} +2422 q^{-70} +1442 q^{-71} -512 q^{-72} -1754 q^{-73} -1427 q^{-74} -79 q^{-75} +1094 q^{-76} +1215 q^{-77} +402 q^{-78} -532 q^{-79} -895 q^{-80} -515 q^{-81} +157 q^{-82} +564 q^{-83} +457 q^{-84} +53 q^{-85} -283 q^{-86} -340 q^{-87} -134 q^{-88} +115 q^{-89} +209 q^{-90} +119 q^{-91} -19 q^{-92} -98 q^{-93} -94 q^{-94} -16 q^{-95} +49 q^{-96} +50 q^{-97} +12 q^{-98} -9 q^{-99} -21 q^{-100} -20 q^{-101} +7 q^{-102} +12 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{36}-2 q^{35}+q^{34}+q^{33}-3 q^{32}+q^{31}+q^{30}+7 q^{29}-10 q^{28}-q^{27}+9 q^{26}-13 q^{25}+q^{24}+9 q^{23}+28 q^{22}-24 q^{21}-19 q^{20}+13 q^{19}-46 q^{18}-4 q^{17}+51 q^{16}+119 q^{15}-15 q^{14}-69 q^{13}-52 q^{12}-220 q^{11}-82 q^{10}+166 q^9+468 q^8+248 q^7-36 q^6-281 q^5-904 q^4-671 q^3+129 q^2+1296 q+1406+843 q^{-1} -286 q^{-2} -2463 q^{-3} -2814 q^{-4} -1280 q^{-5} +2022 q^{-6} +3948 q^{-7} +4080 q^{-8} +1692 q^{-9} -3997 q^{-10} -7111 q^{-11} -6048 q^{-12} +341 q^{-13} +6591 q^{-14} +10268 q^{-15} +7942 q^{-16} -2671 q^{-17} -11812 q^{-18} -14534 q^{-19} -6166 q^{-20} +6068 q^{-21} +17110 q^{-22} +18345 q^{-23} +3858 q^{-24} -13313 q^{-25} -23788 q^{-26} -16818 q^{-27} +302 q^{-28} +20740 q^{-29} +29289 q^{-30} +14325 q^{-31} -9763 q^{-32} -29726 q^{-33} -27651 q^{-34} -8996 q^{-35} +19526 q^{-36} +36660 q^{-37} +24647 q^{-38} -2982 q^{-39} -30850 q^{-40} -34893 q^{-41} -17980 q^{-42} +15180 q^{-43} +39209 q^{-44} +31596 q^{-45} +3769 q^{-46} -28659 q^{-47} -37739 q^{-48} -24145 q^{-49} +10297 q^{-50} +38309 q^{-51} +34815 q^{-52} +8783 q^{-53} -25138 q^{-54} -37536 q^{-55} -27577 q^{-56} +5901 q^{-57} +35503 q^{-58} +35603 q^{-59} +12527 q^{-60} -20802 q^{-61} -35488 q^{-62} -29521 q^{-63} +1281 q^{-64} +30969 q^{-65} +34848 q^{-66} +16129 q^{-67} -14860 q^{-68} -31473 q^{-69} -30505 q^{-70} -4448 q^{-71} +23891 q^{-72} +32060 q^{-73} +19627 q^{-74} -6779 q^{-75} -24549 q^{-76} -29514 q^{-77} -10684 q^{-78} +14058 q^{-79} +25993 q^{-80} +21279 q^{-81} +2141 q^{-82} -14620 q^{-83} -24835 q^{-84} -14902 q^{-85} +3352 q^{-86} +16539 q^{-87} +18845 q^{-88} +8669 q^{-89} -3934 q^{-90} -16341 q^{-91} -14471 q^{-92} -4504 q^{-93} +6245 q^{-94} +12251 q^{-95} +10001 q^{-96} +3585 q^{-97} -6897 q^{-98} -9567 q^{-99} -6822 q^{-100} -880 q^{-101} +4656 q^{-102} +6712 q^{-103} +5644 q^{-104} -498 q^{-105} -3620 q^{-106} -4667 q^{-107} -2986 q^{-108} -165 q^{-109} +2389 q^{-110} +3804 q^{-111} +1480 q^{-112} -58 q^{-113} -1619 q^{-114} -1905 q^{-115} -1366 q^{-116} -17 q^{-117} +1418 q^{-118} +950 q^{-119} +732 q^{-120} -54 q^{-121} -510 q^{-122} -820 q^{-123} -452 q^{-124} +252 q^{-125} +207 q^{-126} +391 q^{-127} +194 q^{-128} +39 q^{-129} -248 q^{-130} -225 q^{-131} +3 q^{-132} -31 q^{-133} +92 q^{-134} +80 q^{-135} +76 q^{-136} -45 q^{-137} -57 q^{-138} - q^{-139} -29 q^{-140} +9 q^{-141} +12 q^{-142} +29 q^{-143} -7 q^{-144} -12 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} </math> | |
|||
coloured_jones_7 = <math>q^{49}-2 q^{48}+q^{47}+q^{46}-3 q^{45}+q^{44}+q^{43}+3 q^{42}+2 q^{41}-12 q^{40}+4 q^{39}+8 q^{38}-9 q^{37}+2 q^{36}+2 q^{35}+15 q^{34}+8 q^{33}-47 q^{32}-4 q^{31}+20 q^{30}-8 q^{29}+23 q^{28}+17 q^{27}+58 q^{26}+23 q^{25}-143 q^{24}-96 q^{23}-36 q^{22}-9 q^{21}+152 q^{20}+191 q^{19}+277 q^{18}+144 q^{17}-377 q^{16}-540 q^{15}-567 q^{14}-327 q^{13}+414 q^{12}+954 q^{11}+1430 q^{10}+1109 q^9-402 q^8-1739 q^7-2768 q^6-2573 q^5-380 q^4+2316 q^3+5012 q^2+5548 q+2388-2370 q^{-1} -7721 q^{-2} -10214 q^{-3} -6877 q^{-4} +623 q^{-5} +10484 q^{-6} +16861 q^{-7} +14375 q^{-8} +4244 q^{-9} -11540 q^{-10} -24697 q^{-11} -25884 q^{-12} -13868 q^{-13} +9592 q^{-14} +32412 q^{-15} +40381 q^{-16} +28983 q^{-17} -1848 q^{-18} -37526 q^{-19} -57242 q^{-20} -49960 q^{-21} -12323 q^{-22} +38102 q^{-23} +73166 q^{-24} +74995 q^{-25} +34149 q^{-26} -31469 q^{-27} -86279 q^{-28} -102321 q^{-29} -61840 q^{-30} +17521 q^{-31} +93437 q^{-32} +128109 q^{-33} +93677 q^{-34} +3851 q^{-35} -93581 q^{-36} -150173 q^{-37} -126202 q^{-38} -30131 q^{-39} +86429 q^{-40} +165930 q^{-41} +156317 q^{-42} +58993 q^{-43} -73228 q^{-44} -174769 q^{-45} -181702 q^{-46} -87249 q^{-47} +56185 q^{-48} +176989 q^{-49} +200831 q^{-50} +112483 q^{-51} -37527 q^{-52} -173938 q^{-53} -213557 q^{-54} -133252 q^{-55} +19431 q^{-56} +167410 q^{-57} +220610 q^{-58} +149010 q^{-59} -3390 q^{-60} -159021 q^{-61} -223169 q^{-62} -160099 q^{-63} -10179 q^{-64} +150009 q^{-65} +222740 q^{-66} +167515 q^{-67} +21258 q^{-68} -141101 q^{-69} -220251 q^{-70} -172291 q^{-71} -30665 q^{-72} +132140 q^{-73} +216507 q^{-74} +175603 q^{-75} +39315 q^{-76} -122795 q^{-77} -211642 q^{-78} -178042 q^{-79} -48156 q^{-80} +112108 q^{-81} +205276 q^{-82} +180019 q^{-83} +58062 q^{-84} -99274 q^{-85} -196848 q^{-86} -181260 q^{-87} -69252 q^{-88} +83491 q^{-89} +185321 q^{-90} +181081 q^{-91} +81626 q^{-92} -64344 q^{-93} -169860 q^{-94} -178470 q^{-95} -94293 q^{-96} +42096 q^{-97} +149911 q^{-98} +172010 q^{-99} +105726 q^{-100} -17597 q^{-101} -125246 q^{-102} -160638 q^{-103} -114329 q^{-104} -7281 q^{-105} +96865 q^{-106} +143639 q^{-107} +117833 q^{-108} +30299 q^{-109} -66111 q^{-110} -121194 q^{-111} -115123 q^{-112} -49018 q^{-113} +35809 q^{-114} +94658 q^{-115} +105401 q^{-116} +61050 q^{-117} -8534 q^{-118} -66080 q^{-119} -89559 q^{-120} -65447 q^{-121} -12985 q^{-122} +38731 q^{-123} +69413 q^{-124} +62059 q^{-125} +26964 q^{-126} -15169 q^{-127} -47756 q^{-128} -52635 q^{-129} -33026 q^{-130} -2300 q^{-131} +27660 q^{-132} +39557 q^{-133} +32200 q^{-134} +12759 q^{-135} -11470 q^{-136} -25676 q^{-137} -26572 q^{-138} -16839 q^{-139} +373 q^{-140} +13644 q^{-141} +18824 q^{-142} +16002 q^{-143} +5406 q^{-144} -4743 q^{-145} -11038 q^{-146} -12491 q^{-147} -7209 q^{-148} -564 q^{-149} +5046 q^{-150} +8191 q^{-151} +6327 q^{-152} +2770 q^{-153} -1113 q^{-154} -4371 q^{-155} -4446 q^{-156} -3090 q^{-157} -820 q^{-158} +1866 q^{-159} +2551 q^{-160} +2323 q^{-161} +1311 q^{-162} -374 q^{-163} -1079 q^{-164} -1465 q^{-165} -1226 q^{-166} -177 q^{-167} +368 q^{-168} +717 q^{-169} +757 q^{-170} +279 q^{-171} +71 q^{-172} -258 q^{-173} -484 q^{-174} -237 q^{-175} -99 q^{-176} +92 q^{-177} +198 q^{-178} +94 q^{-179} +115 q^{-180} +37 q^{-181} -100 q^{-182} -75 q^{-183} -62 q^{-184} -4 q^{-185} +42 q^{-186} -3 q^{-187} +29 q^{-188} +29 q^{-189} -9 q^{-190} -12 q^{-191} -20 q^{-192} -2 q^{-193} +12 q^{-194} -5 q^{-195} +7 q^{-197} -5 q^{-200} +3 q^{-202} - q^{-203} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 25]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 17, 10, 16], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 25]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 17, 10, 16], |
|||
X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 11, 16, 10], |
X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 11, 16, 10], |
||
X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></ |
X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 25]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 25]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 25]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 25]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, -2, -2, 4, -3, 4}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 25]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, 16, 6, 18, 10, 14]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 25]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_25_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 25]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 25]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, 2, -1, -3, -2, -2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 25]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 12 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 25]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 25]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_25_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 25]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 3, {4, 7}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 25]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 12 2 |
|||
-17 - -- + -- + 12 t - 3 t |
-17 - -- + -- + 12 t - 3 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 25]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 25]][z]</nowiki></code></td></tr> |
|||
1 - 3 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 |
|||
1 - 3 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 25]], KnotSignature[Knot[9, 25]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{47, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 5 7 8 8 7 5 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 25], Knot[11, NonAlternating, 134]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 25]], KnotSignature[Knot[9, 25]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{47, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 25]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 3 5 7 8 8 7 5 |
|||
-2 - q + -- - -- + -- - -- + -- - -- + - + q |
-2 - q + -- - -- + -- - -- + -- - -- + - + q |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></ |
q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 25]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 25], Knot[11, NonAlternating, 25]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 25]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -26 -24 2 -18 2 2 2 -6 -4 3 4 |
|||
-q - q + --- + q + --- - --- - --- + q - q + -- + q |
-q - q + --- + q + --- - --- - --- + q - q + -- + q |
||
22 16 14 10 2 |
22 16 14 10 2 |
||
q q q q q</nowiki></ |
q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 25]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 25]][a, z]</nowiki></code></td></tr> |
|||
1 + a - 3 a + 3 a - a + z - 4 a z + 3 a z - a z - 2 a z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 2 4 2 6 2 2 4 4 4 |
|||
1 + a - 3 a + 3 a - a + z - 4 a z + 3 a z - a z - 2 a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 25]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 3 5 7 9 2 |
|||
1 - a - 3 a - 3 a - a - a z - a z + a z + a z - 2 z + |
1 - a - 3 a - 3 a - a - a z - a z + a z + a z - 2 z + |
||
Line 165: | Line 206: | ||
6 8 |
6 8 |
||
a z</nowiki></ |
a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 25]], Vassiliev[3][Knot[9, 25]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 25]], Vassiliev[3][Knot[9, 25]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 25]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 25]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 4 1 2 1 3 2 4 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
||
Line 179: | Line 228: | ||
----- + ----- + ----- + ----- + ---- + ---- + - + q t + q t |
----- + ----- + ----- + ----- + ---- + ---- + - + q t + q t |
||
9 3 7 3 7 2 5 2 5 3 q |
9 3 7 3 7 2 5 2 5 3 q |
||
q t q t q t q t q t q t</nowiki></ |
q t q t q t q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 25], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 25], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 3 10 12 7 30 20 25 52 19 |
|||
-11 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - |
-11 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - |
||
22 20 19 18 17 16 15 14 13 |
22 20 19 18 17 16 15 14 13 |
||
Line 193: | Line 246: | ||
2 3 4 |
2 3 4 |
||
q - 2 q + q</nowiki></ |
q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 16:58, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 25's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,12,6,13 X9,17,10,16 X13,18,14,1 X17,14,18,15 X15,11,16,10 X11,6,12,7 X7283 |
Gauss code | -1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5 |
Dowker-Thistlethwaite code | 4 8 12 2 16 6 18 10 14 |
Conway Notation | [22,21,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{12, 4}, {3, 10}, {8, 11}, {10, 12}, {9, 5}, {4, 8}, {5, 2}, {1, 3}, {6, 9}, {2, 7}, {11, 6}, {7, 1}] |
[edit Notes on presentations of 9 25]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 25"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,12,6,13 X9,17,10,16 X13,18,14,1 X17,14,18,15 X15,11,16,10 X11,6,12,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 16 6 18 10 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,21,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {8, 11}, {10, 12}, {9, 5}, {4, 8}, {5, 2}, {1, 3}, {6, 9}, {2, 7}, {11, 6}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 25"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 47, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n134,}
Same Jones Polynomial (up to mirroring, ): {K11n25,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 25"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n134,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n25,} |
Vassiliev invariants
V2 and V3: | (0, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|