10 35: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 35 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-2,3,-4,2,-6,9,-7,8,-10,5,-8,7,-9,6/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=35|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-2,3,-4,2,-6,9,-7,8,-10,5,-8,7,-9,6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 28: | Line 16: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 6 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 6. |
|||
braid_index = 6 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 6. |
|||
same_jones = [[10_22]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_22]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 75: | Line 42: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{18}-2 q^{17}+6 q^{15}-8 q^{14}-4 q^{13}+19 q^{12}-13 q^{11}-16 q^{10}+34 q^9-11 q^8-32 q^7+44 q^6-4 q^5-45 q^4+46 q^3+3 q^2-47 q+39+7 q^{-1} -36 q^{-2} +24 q^{-3} +5 q^{-4} -19 q^{-5} +12 q^{-6} + q^{-7} -7 q^{-8} +5 q^{-9} -2 q^{-11} + q^{-12} </math> | |
|||
coloured_jones_3 = <math>q^{36}-2 q^{35}+2 q^{33}+3 q^{32}-7 q^{31}-5 q^{30}+10 q^{29}+14 q^{28}-16 q^{27}-23 q^{26}+13 q^{25}+42 q^{24}-11 q^{23}-54 q^{22}-4 q^{21}+67 q^{20}+23 q^{19}-73 q^{18}-45 q^{17}+70 q^{16}+68 q^{15}-61 q^{14}-88 q^{13}+46 q^{12}+107 q^{11}-31 q^{10}-118 q^9+12 q^8+127 q^7+4 q^6-130 q^5-19 q^4+126 q^3+33 q^2-117 q-38+96 q^{-1} +45 q^{-2} -77 q^{-3} -39 q^{-4} +52 q^{-5} +31 q^{-6} -33 q^{-7} -17 q^{-8} +16 q^{-9} +9 q^{-10} -12 q^{-11} +3 q^{-12} +5 q^{-13} -4 q^{-14} -6 q^{-15} +7 q^{-16} +3 q^{-17} -3 q^{-18} -5 q^{-19} +4 q^{-20} + q^{-21} -2 q^{-23} + q^{-24} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{18}-2 q^{17}+6 q^{15}-8 q^{14}-4 q^{13}+19 q^{12}-13 q^{11}-16 q^{10}+34 q^9-11 q^8-32 q^7+44 q^6-4 q^5-45 q^4+46 q^3+3 q^2-47 q+39+7 q^{-1} -36 q^{-2} +24 q^{-3} +5 q^{-4} -19 q^{-5} +12 q^{-6} + q^{-7} -7 q^{-8} +5 q^{-9} -2 q^{-11} + q^{-12} </math>|J3=<math>q^{36}-2 q^{35}+2 q^{33}+3 q^{32}-7 q^{31}-5 q^{30}+10 q^{29}+14 q^{28}-16 q^{27}-23 q^{26}+13 q^{25}+42 q^{24}-11 q^{23}-54 q^{22}-4 q^{21}+67 q^{20}+23 q^{19}-73 q^{18}-45 q^{17}+70 q^{16}+68 q^{15}-61 q^{14}-88 q^{13}+46 q^{12}+107 q^{11}-31 q^{10}-118 q^9+12 q^8+127 q^7+4 q^6-130 q^5-19 q^4+126 q^3+33 q^2-117 q-38+96 q^{-1} +45 q^{-2} -77 q^{-3} -39 q^{-4} +52 q^{-5} +31 q^{-6} -33 q^{-7} -17 q^{-8} +16 q^{-9} +9 q^{-10} -12 q^{-11} +3 q^{-12} +5 q^{-13} -4 q^{-14} -6 q^{-15} +7 q^{-16} +3 q^{-17} -3 q^{-18} -5 q^{-19} +4 q^{-20} + q^{-21} -2 q^{-23} + q^{-24} </math>|J4=<math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+4 q^{55}-9 q^{54}-q^{53}+10 q^{52}+14 q^{50}-30 q^{49}-15 q^{48}+23 q^{47}+12 q^{46}+52 q^{45}-57 q^{44}-56 q^{43}+9 q^{42}+15 q^{41}+137 q^{40}-47 q^{39}-91 q^{38}-47 q^{37}-48 q^{36}+217 q^{35}+16 q^{34}-46 q^{33}-87 q^{32}-189 q^{31}+209 q^{30}+66 q^{29}+89 q^{28}-27 q^{27}-330 q^{26}+94 q^{25}+25 q^{24}+247 q^{23}+133 q^{22}-398 q^{21}-57 q^{20}-103 q^{19}+357 q^{18}+325 q^{17}-385 q^{16}-186 q^{15}-259 q^{14}+412 q^{13}+490 q^{12}-333 q^{11}-276 q^{10}-392 q^9+417 q^8+604 q^7-251 q^6-320 q^5-491 q^4+359 q^3+646 q^2-128 q-283-537 q^{-1} +220 q^{-2} +577 q^{-3} +7 q^{-4} -155 q^{-5} -484 q^{-6} +53 q^{-7} +393 q^{-8} +76 q^{-9} +5 q^{-10} -331 q^{-11} -54 q^{-12} +185 q^{-13} +58 q^{-14} +94 q^{-15} -162 q^{-16} -64 q^{-17} +51 q^{-18} +6 q^{-19} +94 q^{-20} -53 q^{-21} -33 q^{-22} +2 q^{-23} -20 q^{-24} +56 q^{-25} -11 q^{-26} -8 q^{-27} -4 q^{-28} -19 q^{-29} +23 q^{-30} - q^{-31} + q^{-32} - q^{-33} -9 q^{-34} +6 q^{-35} + q^{-37} -2 q^{-39} + q^{-40} </math>|J5=<math>q^{90}-2 q^{89}+2 q^{87}-q^{86}+2 q^{84}-5 q^{83}-2 q^{82}+9 q^{81}+3 q^{80}-3 q^{79}-2 q^{78}-16 q^{77}-9 q^{76}+20 q^{75}+30 q^{74}+11 q^{73}-13 q^{72}-49 q^{71}-52 q^{70}+14 q^{69}+73 q^{68}+83 q^{67}+27 q^{66}-79 q^{65}-140 q^{64}-75 q^{63}+54 q^{62}+160 q^{61}+163 q^{60}+5 q^{59}-166 q^{58}-199 q^{57}-104 q^{56}+82 q^{55}+227 q^{54}+198 q^{53}+22 q^{52}-142 q^{51}-237 q^{50}-199 q^{49}-10 q^{48}+208 q^{47}+327 q^{46}+246 q^{45}-44 q^{44}-408 q^{43}-531 q^{42}-213 q^{41}+384 q^{40}+791 q^{39}+569 q^{38}-237 q^{37}-1005 q^{36}-976 q^{35}-4 q^{34}+1129 q^{33}+1376 q^{32}+340 q^{31}-1166 q^{30}-1751 q^{29}-708 q^{28}+1124 q^{27}+2062 q^{26}+1094 q^{25}-1034 q^{24}-2322 q^{23}-1437 q^{22}+902 q^{21}+2518 q^{20}+1763 q^{19}-774 q^{18}-2679 q^{17}-2026 q^{16}+642 q^{15}+2783 q^{14}+2269 q^{13}-501 q^{12}-2866 q^{11}-2471 q^{10}+356 q^9+2881 q^8+2637 q^7-156 q^6-2829 q^5-2786 q^4-57 q^3+2684 q^2+2832 q+339-2418 q^{-1} -2830 q^{-2} -597 q^{-3} +2062 q^{-4} +2667 q^{-5} +843 q^{-6} -1607 q^{-7} -2417 q^{-8} -997 q^{-9} +1135 q^{-10} +2040 q^{-11} +1068 q^{-12} -701 q^{-13} -1613 q^{-14} -1013 q^{-15} +334 q^{-16} +1172 q^{-17} +904 q^{-18} -87 q^{-19} -808 q^{-20} -699 q^{-21} -68 q^{-22} +484 q^{-23} +537 q^{-24} +131 q^{-25} -288 q^{-26} -356 q^{-27} -136 q^{-28} +129 q^{-29} +244 q^{-30} +119 q^{-31} -63 q^{-32} -138 q^{-33} -96 q^{-34} +10 q^{-35} +93 q^{-36} +66 q^{-37} -4 q^{-38} -36 q^{-39} -48 q^{-40} -20 q^{-41} +34 q^{-42} +28 q^{-43} +3 q^{-44} -2 q^{-45} -16 q^{-46} -17 q^{-47} +9 q^{-48} +10 q^{-49} +4 q^{-51} -3 q^{-52} -7 q^{-53} +2 q^{-54} +2 q^{-55} + q^{-57} -2 q^{-59} + q^{-60} </math>|J6=<math>q^{126}-2 q^{125}+2 q^{123}-q^{122}-2 q^{120}+6 q^{119}-6 q^{118}-3 q^{117}+11 q^{116}-q^{115}-2 q^{114}-13 q^{113}+12 q^{112}-14 q^{111}-8 q^{110}+36 q^{109}+14 q^{108}+5 q^{107}-43 q^{106}+7 q^{105}-55 q^{104}-38 q^{103}+80 q^{102}+72 q^{101}+75 q^{100}-55 q^{99}+6 q^{98}-162 q^{97}-170 q^{96}+53 q^{95}+131 q^{94}+235 q^{93}+50 q^{92}+153 q^{91}-233 q^{90}-378 q^{89}-160 q^{88}-6 q^{87}+284 q^{86}+157 q^{85}+522 q^{84}-21 q^{83}-336 q^{82}-310 q^{81}-304 q^{80}-39 q^{79}-181 q^{78}+653 q^{77}+281 q^{76}+174 q^{75}+151 q^{74}-79 q^{73}-315 q^{72}-1049 q^{71}-79 q^{70}-218 q^{69}+454 q^{68}+1126 q^{67}+1289 q^{66}+531 q^{65}-1460 q^{64}-1367 q^{63}-2050 q^{62}-695 q^{61}+1387 q^{60}+3221 q^{59}+2903 q^{58}-157 q^{57}-1803 q^{56}-4397 q^{55}-3511 q^{54}-267 q^{53}+4179 q^{52}+5792 q^{51}+2917 q^{50}-285 q^{49}-5705 q^{48}-6862 q^{47}-3692 q^{46}+3198 q^{45}+7698 q^{44}+6564 q^{43}+2897 q^{42}-5203 q^{41}-9364 q^{40}-7647 q^{39}+696 q^{38}+8017 q^{37}+9509 q^{36}+6528 q^{35}-3394 q^{34}-10533 q^{33}-10960 q^{32}-2188 q^{31}+7252 q^{30}+11336 q^{29}+9566 q^{28}-1301 q^{27}-10792 q^{26}-13248 q^{25}-4584 q^{24}+6227 q^{23}+12356 q^{22}+11709 q^{21}+433 q^{20}-10720 q^{19}-14752 q^{18}-6362 q^{17}+5315 q^{16}+12954 q^{15}+13222 q^{14}+1892 q^{13}-10414 q^{12}-15733 q^{11}-7912 q^{10}+4177 q^9+13030 q^8+14349 q^7+3582 q^6-9333 q^5-15934 q^4-9452 q^3+2209 q^2+11893 q+14709+5625 q^{-1} -6869 q^{-2} -14545 q^{-3} -10393 q^{-4} -540 q^{-5} +8990 q^{-6} +13375 q^{-7} +7173 q^{-8} -3324 q^{-9} -11136 q^{-10} -9671 q^{-11} -2930 q^{-12} +4926 q^{-13} +10062 q^{-14} +7055 q^{-15} -147 q^{-16} -6647 q^{-17} -7105 q^{-18} -3691 q^{-19} +1384 q^{-20} +5925 q^{-21} +5217 q^{-22} +1360 q^{-23} -2894 q^{-24} -3925 q^{-25} -2838 q^{-26} -416 q^{-27} +2671 q^{-28} +2875 q^{-29} +1304 q^{-30} -883 q^{-31} -1584 q^{-32} -1495 q^{-33} -728 q^{-34} +984 q^{-35} +1215 q^{-36} +704 q^{-37} -223 q^{-38} -474 q^{-39} -579 q^{-40} -484 q^{-41} +375 q^{-42} +442 q^{-43} +284 q^{-44} -94 q^{-45} -117 q^{-46} -197 q^{-47} -262 q^{-48} +181 q^{-49} +163 q^{-50} +121 q^{-51} -53 q^{-52} -24 q^{-53} -73 q^{-54} -147 q^{-55} +87 q^{-56} +59 q^{-57} +62 q^{-58} -20 q^{-59} +5 q^{-60} -27 q^{-61} -76 q^{-62} +33 q^{-63} +13 q^{-64} +29 q^{-65} -6 q^{-66} +11 q^{-67} -6 q^{-68} -31 q^{-69} +11 q^{-70} -2 q^{-71} +10 q^{-72} -2 q^{-73} +5 q^{-74} -9 q^{-76} +4 q^{-77} -2 q^{-78} +2 q^{-79} + q^{-81} -2 q^{-83} + q^{-84} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+4 q^{55}-9 q^{54}-q^{53}+10 q^{52}+14 q^{50}-30 q^{49}-15 q^{48}+23 q^{47}+12 q^{46}+52 q^{45}-57 q^{44}-56 q^{43}+9 q^{42}+15 q^{41}+137 q^{40}-47 q^{39}-91 q^{38}-47 q^{37}-48 q^{36}+217 q^{35}+16 q^{34}-46 q^{33}-87 q^{32}-189 q^{31}+209 q^{30}+66 q^{29}+89 q^{28}-27 q^{27}-330 q^{26}+94 q^{25}+25 q^{24}+247 q^{23}+133 q^{22}-398 q^{21}-57 q^{20}-103 q^{19}+357 q^{18}+325 q^{17}-385 q^{16}-186 q^{15}-259 q^{14}+412 q^{13}+490 q^{12}-333 q^{11}-276 q^{10}-392 q^9+417 q^8+604 q^7-251 q^6-320 q^5-491 q^4+359 q^3+646 q^2-128 q-283-537 q^{-1} +220 q^{-2} +577 q^{-3} +7 q^{-4} -155 q^{-5} -484 q^{-6} +53 q^{-7} +393 q^{-8} +76 q^{-9} +5 q^{-10} -331 q^{-11} -54 q^{-12} +185 q^{-13} +58 q^{-14} +94 q^{-15} -162 q^{-16} -64 q^{-17} +51 q^{-18} +6 q^{-19} +94 q^{-20} -53 q^{-21} -33 q^{-22} +2 q^{-23} -20 q^{-24} +56 q^{-25} -11 q^{-26} -8 q^{-27} -4 q^{-28} -19 q^{-29} +23 q^{-30} - q^{-31} + q^{-32} - q^{-33} -9 q^{-34} +6 q^{-35} + q^{-37} -2 q^{-39} + q^{-40} </math> | |
|||
coloured_jones_5 = <math>q^{90}-2 q^{89}+2 q^{87}-q^{86}+2 q^{84}-5 q^{83}-2 q^{82}+9 q^{81}+3 q^{80}-3 q^{79}-2 q^{78}-16 q^{77}-9 q^{76}+20 q^{75}+30 q^{74}+11 q^{73}-13 q^{72}-49 q^{71}-52 q^{70}+14 q^{69}+73 q^{68}+83 q^{67}+27 q^{66}-79 q^{65}-140 q^{64}-75 q^{63}+54 q^{62}+160 q^{61}+163 q^{60}+5 q^{59}-166 q^{58}-199 q^{57}-104 q^{56}+82 q^{55}+227 q^{54}+198 q^{53}+22 q^{52}-142 q^{51}-237 q^{50}-199 q^{49}-10 q^{48}+208 q^{47}+327 q^{46}+246 q^{45}-44 q^{44}-408 q^{43}-531 q^{42}-213 q^{41}+384 q^{40}+791 q^{39}+569 q^{38}-237 q^{37}-1005 q^{36}-976 q^{35}-4 q^{34}+1129 q^{33}+1376 q^{32}+340 q^{31}-1166 q^{30}-1751 q^{29}-708 q^{28}+1124 q^{27}+2062 q^{26}+1094 q^{25}-1034 q^{24}-2322 q^{23}-1437 q^{22}+902 q^{21}+2518 q^{20}+1763 q^{19}-774 q^{18}-2679 q^{17}-2026 q^{16}+642 q^{15}+2783 q^{14}+2269 q^{13}-501 q^{12}-2866 q^{11}-2471 q^{10}+356 q^9+2881 q^8+2637 q^7-156 q^6-2829 q^5-2786 q^4-57 q^3+2684 q^2+2832 q+339-2418 q^{-1} -2830 q^{-2} -597 q^{-3} +2062 q^{-4} +2667 q^{-5} +843 q^{-6} -1607 q^{-7} -2417 q^{-8} -997 q^{-9} +1135 q^{-10} +2040 q^{-11} +1068 q^{-12} -701 q^{-13} -1613 q^{-14} -1013 q^{-15} +334 q^{-16} +1172 q^{-17} +904 q^{-18} -87 q^{-19} -808 q^{-20} -699 q^{-21} -68 q^{-22} +484 q^{-23} +537 q^{-24} +131 q^{-25} -288 q^{-26} -356 q^{-27} -136 q^{-28} +129 q^{-29} +244 q^{-30} +119 q^{-31} -63 q^{-32} -138 q^{-33} -96 q^{-34} +10 q^{-35} +93 q^{-36} +66 q^{-37} -4 q^{-38} -36 q^{-39} -48 q^{-40} -20 q^{-41} +34 q^{-42} +28 q^{-43} +3 q^{-44} -2 q^{-45} -16 q^{-46} -17 q^{-47} +9 q^{-48} +10 q^{-49} +4 q^{-51} -3 q^{-52} -7 q^{-53} +2 q^{-54} +2 q^{-55} + q^{-57} -2 q^{-59} + q^{-60} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{126}-2 q^{125}+2 q^{123}-q^{122}-2 q^{120}+6 q^{119}-6 q^{118}-3 q^{117}+11 q^{116}-q^{115}-2 q^{114}-13 q^{113}+12 q^{112}-14 q^{111}-8 q^{110}+36 q^{109}+14 q^{108}+5 q^{107}-43 q^{106}+7 q^{105}-55 q^{104}-38 q^{103}+80 q^{102}+72 q^{101}+75 q^{100}-55 q^{99}+6 q^{98}-162 q^{97}-170 q^{96}+53 q^{95}+131 q^{94}+235 q^{93}+50 q^{92}+153 q^{91}-233 q^{90}-378 q^{89}-160 q^{88}-6 q^{87}+284 q^{86}+157 q^{85}+522 q^{84}-21 q^{83}-336 q^{82}-310 q^{81}-304 q^{80}-39 q^{79}-181 q^{78}+653 q^{77}+281 q^{76}+174 q^{75}+151 q^{74}-79 q^{73}-315 q^{72}-1049 q^{71}-79 q^{70}-218 q^{69}+454 q^{68}+1126 q^{67}+1289 q^{66}+531 q^{65}-1460 q^{64}-1367 q^{63}-2050 q^{62}-695 q^{61}+1387 q^{60}+3221 q^{59}+2903 q^{58}-157 q^{57}-1803 q^{56}-4397 q^{55}-3511 q^{54}-267 q^{53}+4179 q^{52}+5792 q^{51}+2917 q^{50}-285 q^{49}-5705 q^{48}-6862 q^{47}-3692 q^{46}+3198 q^{45}+7698 q^{44}+6564 q^{43}+2897 q^{42}-5203 q^{41}-9364 q^{40}-7647 q^{39}+696 q^{38}+8017 q^{37}+9509 q^{36}+6528 q^{35}-3394 q^{34}-10533 q^{33}-10960 q^{32}-2188 q^{31}+7252 q^{30}+11336 q^{29}+9566 q^{28}-1301 q^{27}-10792 q^{26}-13248 q^{25}-4584 q^{24}+6227 q^{23}+12356 q^{22}+11709 q^{21}+433 q^{20}-10720 q^{19}-14752 q^{18}-6362 q^{17}+5315 q^{16}+12954 q^{15}+13222 q^{14}+1892 q^{13}-10414 q^{12}-15733 q^{11}-7912 q^{10}+4177 q^9+13030 q^8+14349 q^7+3582 q^6-9333 q^5-15934 q^4-9452 q^3+2209 q^2+11893 q+14709+5625 q^{-1} -6869 q^{-2} -14545 q^{-3} -10393 q^{-4} -540 q^{-5} +8990 q^{-6} +13375 q^{-7} +7173 q^{-8} -3324 q^{-9} -11136 q^{-10} -9671 q^{-11} -2930 q^{-12} +4926 q^{-13} +10062 q^{-14} +7055 q^{-15} -147 q^{-16} -6647 q^{-17} -7105 q^{-18} -3691 q^{-19} +1384 q^{-20} +5925 q^{-21} +5217 q^{-22} +1360 q^{-23} -2894 q^{-24} -3925 q^{-25} -2838 q^{-26} -416 q^{-27} +2671 q^{-28} +2875 q^{-29} +1304 q^{-30} -883 q^{-31} -1584 q^{-32} -1495 q^{-33} -728 q^{-34} +984 q^{-35} +1215 q^{-36} +704 q^{-37} -223 q^{-38} -474 q^{-39} -579 q^{-40} -484 q^{-41} +375 q^{-42} +442 q^{-43} +284 q^{-44} -94 q^{-45} -117 q^{-46} -197 q^{-47} -262 q^{-48} +181 q^{-49} +163 q^{-50} +121 q^{-51} -53 q^{-52} -24 q^{-53} -73 q^{-54} -147 q^{-55} +87 q^{-56} +59 q^{-57} +62 q^{-58} -20 q^{-59} +5 q^{-60} -27 q^{-61} -76 q^{-62} +33 q^{-63} +13 q^{-64} +29 q^{-65} -6 q^{-66} +11 q^{-67} -6 q^{-68} -31 q^{-69} +11 q^{-70} -2 q^{-71} +10 q^{-72} -2 q^{-73} +5 q^{-74} -9 q^{-76} +4 q^{-77} -2 q^{-78} +2 q^{-79} + q^{-81} -2 q^{-83} + q^{-84} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 35]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 35]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[5, 16, 6, 17], X[11, 1, 12, 20], X[13, 19, 14, 18], |
X[5, 16, 6, 17], X[11, 1, 12, 20], X[13, 19, 14, 18], |
||
X[17, 15, 18, 14], X[19, 13, 20, 12], X[15, 6, 16, 7]]</nowiki></ |
X[17, 15, 18, 14], X[19, 13, 20, 12], X[15, 6, 16, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 35]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 35]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, |
|||
7, -9, 6]</nowiki></ |
7, -9, 6]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 35]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 35]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 35]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 16, 10, 2, 20, 18, 6, 14, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{6, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 35]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[6, {-1, 2, -1, 2, 3, -2, -4, 3, 5, -4, 5}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 35]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_35_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 35]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 35]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{6, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 35]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>6</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 35]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_35_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 35]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 35]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 12 2 |
|||
21 + -- - -- - 12 t + 2 t |
21 + -- - -- - 12 t + 2 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 35]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 35]][z]</nowiki></code></td></tr> |
|||
1 - 4 z + 2 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - 4 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 35]], KnotSignature[Knot[10, 35]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{49, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 6 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 35]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 35]], KnotSignature[Knot[10, 35]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{49, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 35]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 4 6 2 3 4 5 6 |
|||
8 + q - -- + -- - - - 8 q + 7 q - 6 q + 4 q - 2 q + q |
8 + q - -- + -- - - - 8 q + 7 q - 6 q + 4 q - 2 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 35]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 22], Knot[10, 35]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 35]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 -12 -10 -8 2 2 2 6 8 10 14 16 |
|||
q + q - q + q - -- + -- + q - q + q - 2 q + q - q + |
q + q - q + q - -- + -- + q - q + q - 2 q + q - q + |
||
4 2 |
4 2 |
||
Line 149: | Line 182: | ||
18 20 |
18 20 |
||
q + q</nowiki></ |
q + q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 35]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 35]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
-6 -4 2 4 2 z 2 2 4 z |
-6 -4 2 4 2 z 2 2 4 z |
||
1 + a - a - a + a - ---- - 2 a z + z + -- |
1 + a - a - a + a - ---- - 2 a z + z + -- |
||
4 2 |
4 2 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 35]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 35]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-6 -4 2 4 2 z z z 3 2 4 z |
-6 -4 2 4 2 z z z 3 2 4 z |
||
1 - a - a + a + a - --- - -- + - + a z + a z - 3 z + ---- + |
1 - a - a + a + a - --- - -- + - + a z + a z - 3 z + ---- + |
||
Line 187: | Line 228: | ||
-- + -- |
-- + -- |
||
3 a |
3 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 35]], Vassiliev[3][Knot[10, 35]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 35]], Vassiliev[3][Knot[10, 35]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 35]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-4, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 35]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 1 1 1 3 1 3 3 |
|||
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 4 q t + |
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 4 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
Line 202: | Line 251: | ||
9 5 11 5 13 6 |
9 5 11 5 13 6 |
||
q t + q t + q t</nowiki></ |
q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 35], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 35], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 2 5 7 -7 12 19 5 24 36 7 |
|||
39 + q - --- + -- - -- + q + -- - -- + -- + -- - -- + - - 47 q + |
39 + q - --- + -- - -- + q + -- - -- + -- + -- - -- + - - 47 q + |
||
11 9 8 6 5 4 3 2 q |
11 9 8 6 5 4 3 2 q |
||
Line 214: | Line 267: | ||
10 11 12 13 14 15 17 18 |
10 11 12 13 14 15 17 18 |
||
16 q - 13 q + 19 q - 4 q - 8 q + 6 q - 2 q + q</nowiki></ |
16 q - 13 q + 19 q - 4 q - 8 q + 6 q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 16:58, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 35's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X7,10,8,11 X3948 X9,3,10,2 X5,16,6,17 X11,1,12,20 X13,19,14,18 X17,15,18,14 X19,13,20,12 X15,6,16,7 |
Gauss code | -1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6 |
Dowker-Thistlethwaite code | 4 8 16 10 2 20 18 6 14 12 |
Conway Notation | [2422] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||||
Length is 11, width is 6, Braid index is 6 |
[{12, 9}, {10, 8}, {9, 11}, {5, 10}, {7, 1}, {8, 6}, {2, 7}, {6, 12}, {1, 3}, {4, 2}, {3, 5}, {11, 4}] |
[edit Notes on presentations of 10 35]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 35"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X7,10,8,11 X3948 X9,3,10,2 X5,16,6,17 X11,1,12,20 X13,19,14,18 X17,15,18,14 X19,13,20,12 X15,6,16,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 16 10 2 20 18 6 14 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2422] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 6, 11, 6 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 9}, {10, 8}, {9, 11}, {5, 10}, {7, 1}, {8, 6}, {2, 7}, {6, 12}, {1, 3}, {4, 2}, {3, 5}, {11, 4}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 35"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 49, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_22,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 35"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_22,} |
Vassiliev invariants
V2 and V3: | (-4, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 35. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|