9 30: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 30 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-9,5,-3,4,-2,7,-8,9,-5,6,-7,8,-6/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=30|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-9,5,-3,4,-2,7,-8,9,-5,6,-7,8,-6/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 9 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[K11n130]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = [[K11n114]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n130]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[K11n114]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
||
Line 72: | Line 39: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-3 q^{11}+2 q^{10}+8 q^9-18 q^8+4 q^7+31 q^6-43 q^5-q^4+63 q^3-63 q^2-13 q+85-66 q^{-1} -25 q^{-2} +85 q^{-3} -50 q^{-4} -31 q^{-5} +64 q^{-6} -25 q^{-7} -26 q^{-8} +33 q^{-9} -6 q^{-10} -13 q^{-11} +10 q^{-12} -3 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>q^{24}-3 q^{23}+2 q^{22}+4 q^{21}-2 q^{20}-14 q^{19}+5 q^{18}+32 q^{17}-6 q^{16}-61 q^{15}+q^{14}+99 q^{13}+21 q^{12}-153 q^{11}-49 q^{10}+201 q^9+97 q^8-248 q^7-151 q^6+282 q^5+209 q^4-303 q^3-260 q^2+306 q+302-293 q^{-1} -330 q^{-2} +264 q^{-3} +347 q^{-4} -226 q^{-5} -344 q^{-6} +173 q^{-7} +332 q^{-8} -121 q^{-9} -297 q^{-10} +60 q^{-11} +262 q^{-12} -21 q^{-13} -203 q^{-14} -19 q^{-15} +152 q^{-16} +34 q^{-17} -99 q^{-18} -39 q^{-19} +59 q^{-20} +32 q^{-21} -29 q^{-22} -23 q^{-23} +13 q^{-24} +13 q^{-25} -5 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-3 q^{11}+2 q^{10}+8 q^9-18 q^8+4 q^7+31 q^6-43 q^5-q^4+63 q^3-63 q^2-13 q+85-66 q^{-1} -25 q^{-2} +85 q^{-3} -50 q^{-4} -31 q^{-5} +64 q^{-6} -25 q^{-7} -26 q^{-8} +33 q^{-9} -6 q^{-10} -13 q^{-11} +10 q^{-12} -3 q^{-14} + q^{-15} </math>|J3=<math>q^{24}-3 q^{23}+2 q^{22}+4 q^{21}-2 q^{20}-14 q^{19}+5 q^{18}+32 q^{17}-6 q^{16}-61 q^{15}+q^{14}+99 q^{13}+21 q^{12}-153 q^{11}-49 q^{10}+201 q^9+97 q^8-248 q^7-151 q^6+282 q^5+209 q^4-303 q^3-260 q^2+306 q+302-293 q^{-1} -330 q^{-2} +264 q^{-3} +347 q^{-4} -226 q^{-5} -344 q^{-6} +173 q^{-7} +332 q^{-8} -121 q^{-9} -297 q^{-10} +60 q^{-11} +262 q^{-12} -21 q^{-13} -203 q^{-14} -19 q^{-15} +152 q^{-16} +34 q^{-17} -99 q^{-18} -39 q^{-19} +59 q^{-20} +32 q^{-21} -29 q^{-22} -23 q^{-23} +13 q^{-24} +13 q^{-25} -5 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{40}-3 q^{39}+2 q^{38}+4 q^{37}-6 q^{36}+2 q^{35}-13 q^{34}+16 q^{33}+27 q^{32}-28 q^{31}-13 q^{30}-61 q^{29}+61 q^{28}+129 q^{27}-46 q^{26}-82 q^{25}-238 q^{24}+112 q^{23}+387 q^{22}+55 q^{21}-172 q^{20}-661 q^{19}+24 q^{18}+779 q^{17}+411 q^{16}-133 q^{15}-1284 q^{14}-332 q^{13}+1105 q^{12}+970 q^{11}+164 q^{10}-1870 q^9-886 q^8+1191 q^7+1502 q^6+637 q^5-2198 q^4-1404 q^3+1031 q^2+1806 q+1104-2213 q^{-1} -1721 q^{-2} +718 q^{-3} +1834 q^{-4} +1448 q^{-5} -1949 q^{-6} -1806 q^{-7} +308 q^{-8} +1616 q^{-9} +1647 q^{-10} -1454 q^{-11} -1671 q^{-12} -138 q^{-13} +1180 q^{-14} +1652 q^{-15} -810 q^{-16} -1308 q^{-17} -496 q^{-18} +611 q^{-19} +1401 q^{-20} -220 q^{-21} -783 q^{-22} -599 q^{-23} +106 q^{-24} +928 q^{-25} +105 q^{-26} -288 q^{-27} -439 q^{-28} -147 q^{-29} +445 q^{-30} +143 q^{-31} -14 q^{-32} -200 q^{-33} -153 q^{-34} +145 q^{-35} +65 q^{-36} +45 q^{-37} -53 q^{-38} -73 q^{-39} +32 q^{-40} +12 q^{-41} +23 q^{-42} -6 q^{-43} -20 q^{-44} +5 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math>|J5=<math>q^{60}-3 q^{59}+2 q^{58}+4 q^{57}-6 q^{56}-2 q^{55}+3 q^{54}-2 q^{53}+11 q^{52}+15 q^{51}-22 q^{50}-37 q^{49}-6 q^{48}+26 q^{47}+78 q^{46}+63 q^{45}-61 q^{44}-184 q^{43}-145 q^{42}+82 q^{41}+334 q^{40}+352 q^{39}-46 q^{38}-575 q^{37}-711 q^{36}-120 q^{35}+856 q^{34}+1284 q^{33}+500 q^{32}-1082 q^{31}-2062 q^{30}-1232 q^{29}+1154 q^{28}+3039 q^{27}+2281 q^{26}-936 q^{25}-3985 q^{24}-3742 q^{23}+325 q^{22}+4883 q^{21}+5394 q^{20}+663 q^{19}-5450 q^{18}-7149 q^{17}-2033 q^{16}+5724 q^{15}+8776 q^{14}+3590 q^{13}-5597 q^{12}-10153 q^{11}-5200 q^{10}+5155 q^9+11178 q^8+6701 q^7-4480 q^6-11822 q^5-7986 q^4+3677 q^3+12089 q^2+9009 q-2802-12056 q^{-1} -9757 q^{-2} +1923 q^{-3} +11735 q^{-4} +10252 q^{-5} -1006 q^{-6} -11181 q^{-7} -10548 q^{-8} +93 q^{-9} +10376 q^{-10} +10624 q^{-11} +901 q^{-12} -9355 q^{-13} -10500 q^{-14} -1882 q^{-15} +8046 q^{-16} +10132 q^{-17} +2900 q^{-18} -6571 q^{-19} -9486 q^{-20} -3729 q^{-21} +4840 q^{-22} +8528 q^{-23} +4453 q^{-24} -3165 q^{-25} -7283 q^{-26} -4739 q^{-27} +1488 q^{-28} +5784 q^{-29} +4767 q^{-30} -146 q^{-31} -4248 q^{-32} -4284 q^{-33} -884 q^{-34} +2735 q^{-35} +3600 q^{-36} +1429 q^{-37} -1485 q^{-38} -2692 q^{-39} -1593 q^{-40} +543 q^{-41} +1830 q^{-42} +1422 q^{-43} +36 q^{-44} -1072 q^{-45} -1113 q^{-46} -301 q^{-47} +540 q^{-48} +746 q^{-49} +347 q^{-50} -193 q^{-51} -446 q^{-52} -294 q^{-53} +34 q^{-54} +236 q^{-55} +190 q^{-56} +26 q^{-57} -95 q^{-58} -116 q^{-59} -42 q^{-60} +45 q^{-61} +58 q^{-62} +18 q^{-63} -6 q^{-64} -21 q^{-65} -23 q^{-66} +6 q^{-67} +13 q^{-68} +2 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{84}-3 q^{83}+2 q^{82}+4 q^{81}-6 q^{80}-2 q^{79}-q^{78}+14 q^{77}-7 q^{76}-q^{75}+21 q^{74}-36 q^{73}-24 q^{72}-3 q^{71}+68 q^{70}+26 q^{69}+10 q^{68}+47 q^{67}-165 q^{66}-166 q^{65}-60 q^{64}+255 q^{63}+255 q^{62}+222 q^{61}+183 q^{60}-583 q^{59}-805 q^{58}-583 q^{57}+505 q^{56}+1060 q^{55}+1356 q^{54}+1143 q^{53}-1175 q^{52}-2662 q^{51}-2873 q^{50}-298 q^{49}+2254 q^{48}+4613 q^{47}+4970 q^{46}-202 q^{45}-5504 q^{44}-8702 q^{43}-5038 q^{42}+1365 q^{41}+9631 q^{40}+13916 q^{39}+6142 q^{38}-6085 q^{37}-17419 q^{36}-16308 q^{35}-6154 q^{34}+12392 q^{33}+26764 q^{32}+20456 q^{31}+655 q^{30}-24126 q^{29}-32162 q^{28}-22522 q^{27}+7565 q^{26}+37724 q^{25}+39809 q^{24}+16353 q^{23}-23280 q^{22}-46107 q^{21}-43764 q^{20}-5863 q^{19}+41144 q^{18}+57063 q^{17}+36348 q^{16}-14213 q^{15}-52623 q^{14}-62465 q^{13}-23006 q^{12}+36529 q^{11}+66871 q^{10}+53604 q^9-1437 q^8-51360 q^7-73801 q^6-37744 q^5+27760 q^4+68954 q^3+64272 q^2+10197 q-45553-77764 q^{-1} -47408 q^{-2} +18458 q^{-3} +65948 q^{-4} +68839 q^{-5} +19152 q^{-6} -37814 q^{-7} -76599 q^{-8} -52952 q^{-9} +9292 q^{-10} +59637 q^{-11} +69304 q^{-12} +26675 q^{-13} -28185 q^{-14} -71459 q^{-15} -56063 q^{-16} -1056 q^{-17} +49597 q^{-18} +66234 q^{-19} +33915 q^{-20} -15434 q^{-21} -61480 q^{-22} -56500 q^{-23} -13004 q^{-24} +34702 q^{-25} +58150 q^{-26} +39502 q^{-27} +65 q^{-28} -45519 q^{-29} -51820 q^{-30} -23870 q^{-31} +16060 q^{-32} +43584 q^{-33} +39740 q^{-34} +14429 q^{-35} -25239 q^{-36} -39997 q^{-37} -28734 q^{-38} -1411 q^{-39} +24455 q^{-40} +32015 q^{-41} +21942 q^{-42} -6334 q^{-43} -23166 q^{-44} -24707 q^{-45} -11495 q^{-46} +6871 q^{-47} +18726 q^{-48} +19971 q^{-49} +4875 q^{-50} -7707 q^{-51} -14685 q^{-52} -12040 q^{-53} -3182 q^{-54} +6384 q^{-55} +12097 q^{-56} +6920 q^{-57} +903 q^{-58} -5206 q^{-59} -7072 q^{-60} -5060 q^{-61} -208 q^{-62} +4665 q^{-63} +4072 q^{-64} +2696 q^{-65} -342 q^{-66} -2336 q^{-67} -3022 q^{-68} -1544 q^{-69} +917 q^{-70} +1252 q^{-71} +1561 q^{-72} +669 q^{-73} -200 q^{-74} -1062 q^{-75} -880 q^{-76} -27 q^{-77} +95 q^{-78} +487 q^{-79} +368 q^{-80} +189 q^{-81} -234 q^{-82} -281 q^{-83} -50 q^{-84} -78 q^{-85} +83 q^{-86} +97 q^{-87} +106 q^{-88} -37 q^{-89} -61 q^{-90} -3 q^{-91} -35 q^{-92} +6 q^{-93} +12 q^{-94} +32 q^{-95} -6 q^{-96} -13 q^{-97} +5 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math>|J7=<math>q^{112}-3 q^{111}+2 q^{110}+4 q^{109}-6 q^{108}-2 q^{107}-q^{106}+10 q^{105}+9 q^{104}-19 q^{103}+5 q^{102}+7 q^{101}-23 q^{100}-11 q^{99}-3 q^{98}+54 q^{97}+66 q^{96}-43 q^{95}-26 q^{94}-48 q^{93}-120 q^{92}-41 q^{91}+10 q^{90}+256 q^{89}+360 q^{88}+57 q^{87}-118 q^{86}-439 q^{85}-697 q^{84}-416 q^{83}-11 q^{82}+938 q^{81}+1661 q^{80}+1136 q^{79}+234 q^{78}-1533 q^{77}-3073 q^{76}-2855 q^{75}-1462 q^{74}+2017 q^{73}+5545 q^{72}+6200 q^{71}+4188 q^{70}-1697 q^{69}-8598 q^{68}-11668 q^{67}-9984 q^{66}-939 q^{65}+11553 q^{64}+19699 q^{63}+20162 q^{62}+7772 q^{61}-12632 q^{60}-29561 q^{59}-35566 q^{58}-21280 q^{57}+8931 q^{56}+39285 q^{55}+56377 q^{54}+43541 q^{53}+2667 q^{52}-45848 q^{51}-80761 q^{50}-74920 q^{49}-25322 q^{48}+44770 q^{47}+105238 q^{46}+114826 q^{45}+60818 q^{44}-32714 q^{43}-125498 q^{42}-159320 q^{41}-108154 q^{40}+6363 q^{39}+136276 q^{38}+204052 q^{37}+165116 q^{36}+34010 q^{35}-134696 q^{34}-243111 q^{33}-225975 q^{32}-86496 q^{31}+118414 q^{30}+272168 q^{29}+285618 q^{28}+146556 q^{27}-89189 q^{26}-288323 q^{25}-338081 q^{24}-208618 q^{23}+49860 q^{22}+290962 q^{21}+379836 q^{20}+267301 q^{19}-5088 q^{18}-281941 q^{17}-409021 q^{16}-318196 q^{15}-40378 q^{14}+264251 q^{13}+425772 q^{12}+358976 q^{11}+82746 q^{10}-241485 q^9-432054 q^8-389088 q^7-119422 q^6+216898 q^5+430356 q^4+409333 q^3+149583 q^2-192532 q-423183-421788 q^{-1} -173788 q^{-2} +169564 q^{-3} +412620 q^{-4} +428330 q^{-5} +193300 q^{-6} -147605 q^{-7} -399497 q^{-8} -430936 q^{-9} -210137 q^{-10} +125684 q^{-11} +384105 q^{-12} +430664 q^{-13} +225747 q^{-14} -102197 q^{-15} -365409 q^{-16} -427749 q^{-17} -241544 q^{-18} +75535 q^{-19} +342270 q^{-20} +421529 q^{-21} +257631 q^{-22} -44562 q^{-23} -312837 q^{-24} -410688 q^{-25} -273437 q^{-26} +9110 q^{-27} +276036 q^{-28} +393037 q^{-29} +286912 q^{-30} +30306 q^{-31} -231134 q^{-32} -367093 q^{-33} -295693 q^{-34} -70743 q^{-35} +179153 q^{-36} +330748 q^{-37} +296342 q^{-38} +109569 q^{-39} -121869 q^{-40} -284915 q^{-41} -286634 q^{-42} -141581 q^{-43} +63812 q^{-44} +230046 q^{-45} +264303 q^{-46} +163756 q^{-47} -9038 q^{-48} -170584 q^{-49} -230685 q^{-50} -172069 q^{-51} -36434 q^{-52} +110653 q^{-53} +187209 q^{-54} +166245 q^{-55} +69551 q^{-56} -56314 q^{-57} -139368 q^{-58} -147372 q^{-59} -87038 q^{-60} +12099 q^{-61} +91670 q^{-62} +119293 q^{-63} +90197 q^{-64} +18811 q^{-65} -50124 q^{-66} -87023 q^{-67} -81246 q^{-68} -35776 q^{-69} +17916 q^{-70} +55884 q^{-71} +64964 q^{-72} +40523 q^{-73} +3154 q^{-74} -29803 q^{-75} -46006 q^{-76} -36794 q^{-77} -13917 q^{-78} +11200 q^{-79} +28515 q^{-80} +28303 q^{-81} +16730 q^{-82} +106 q^{-83} -14834 q^{-84} -18971 q^{-85} -14824 q^{-86} -5135 q^{-87} +5906 q^{-88} +10887 q^{-89} +10739 q^{-90} +6184 q^{-91} -907 q^{-92} -5177 q^{-93} -6764 q^{-94} -5221 q^{-95} -1033 q^{-96} +1882 q^{-97} +3592 q^{-98} +3494 q^{-99} +1452 q^{-100} -168 q^{-101} -1623 q^{-102} -2149 q^{-103} -1162 q^{-104} -277 q^{-105} +598 q^{-106} +1047 q^{-107} +671 q^{-108} +429 q^{-109} -79 q^{-110} -538 q^{-111} -402 q^{-112} -265 q^{-113} +9 q^{-114} +202 q^{-115} +121 q^{-116} +170 q^{-117} +90 q^{-118} -86 q^{-119} -87 q^{-120} -87 q^{-121} -16 q^{-122} +42 q^{-123} -5 q^{-124} +31 q^{-125} +35 q^{-126} -6 q^{-127} -12 q^{-128} -23 q^{-129} -3 q^{-130} +13 q^{-131} -5 q^{-132} +7 q^{-134} -5 q^{-137} +3 q^{-139} - q^{-140} </math>}} |
|||
coloured_jones_4 = <math>q^{40}-3 q^{39}+2 q^{38}+4 q^{37}-6 q^{36}+2 q^{35}-13 q^{34}+16 q^{33}+27 q^{32}-28 q^{31}-13 q^{30}-61 q^{29}+61 q^{28}+129 q^{27}-46 q^{26}-82 q^{25}-238 q^{24}+112 q^{23}+387 q^{22}+55 q^{21}-172 q^{20}-661 q^{19}+24 q^{18}+779 q^{17}+411 q^{16}-133 q^{15}-1284 q^{14}-332 q^{13}+1105 q^{12}+970 q^{11}+164 q^{10}-1870 q^9-886 q^8+1191 q^7+1502 q^6+637 q^5-2198 q^4-1404 q^3+1031 q^2+1806 q+1104-2213 q^{-1} -1721 q^{-2} +718 q^{-3} +1834 q^{-4} +1448 q^{-5} -1949 q^{-6} -1806 q^{-7} +308 q^{-8} +1616 q^{-9} +1647 q^{-10} -1454 q^{-11} -1671 q^{-12} -138 q^{-13} +1180 q^{-14} +1652 q^{-15} -810 q^{-16} -1308 q^{-17} -496 q^{-18} +611 q^{-19} +1401 q^{-20} -220 q^{-21} -783 q^{-22} -599 q^{-23} +106 q^{-24} +928 q^{-25} +105 q^{-26} -288 q^{-27} -439 q^{-28} -147 q^{-29} +445 q^{-30} +143 q^{-31} -14 q^{-32} -200 q^{-33} -153 q^{-34} +145 q^{-35} +65 q^{-36} +45 q^{-37} -53 q^{-38} -73 q^{-39} +32 q^{-40} +12 q^{-41} +23 q^{-42} -6 q^{-43} -20 q^{-44} +5 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>q^{60}-3 q^{59}+2 q^{58}+4 q^{57}-6 q^{56}-2 q^{55}+3 q^{54}-2 q^{53}+11 q^{52}+15 q^{51}-22 q^{50}-37 q^{49}-6 q^{48}+26 q^{47}+78 q^{46}+63 q^{45}-61 q^{44}-184 q^{43}-145 q^{42}+82 q^{41}+334 q^{40}+352 q^{39}-46 q^{38}-575 q^{37}-711 q^{36}-120 q^{35}+856 q^{34}+1284 q^{33}+500 q^{32}-1082 q^{31}-2062 q^{30}-1232 q^{29}+1154 q^{28}+3039 q^{27}+2281 q^{26}-936 q^{25}-3985 q^{24}-3742 q^{23}+325 q^{22}+4883 q^{21}+5394 q^{20}+663 q^{19}-5450 q^{18}-7149 q^{17}-2033 q^{16}+5724 q^{15}+8776 q^{14}+3590 q^{13}-5597 q^{12}-10153 q^{11}-5200 q^{10}+5155 q^9+11178 q^8+6701 q^7-4480 q^6-11822 q^5-7986 q^4+3677 q^3+12089 q^2+9009 q-2802-12056 q^{-1} -9757 q^{-2} +1923 q^{-3} +11735 q^{-4} +10252 q^{-5} -1006 q^{-6} -11181 q^{-7} -10548 q^{-8} +93 q^{-9} +10376 q^{-10} +10624 q^{-11} +901 q^{-12} -9355 q^{-13} -10500 q^{-14} -1882 q^{-15} +8046 q^{-16} +10132 q^{-17} +2900 q^{-18} -6571 q^{-19} -9486 q^{-20} -3729 q^{-21} +4840 q^{-22} +8528 q^{-23} +4453 q^{-24} -3165 q^{-25} -7283 q^{-26} -4739 q^{-27} +1488 q^{-28} +5784 q^{-29} +4767 q^{-30} -146 q^{-31} -4248 q^{-32} -4284 q^{-33} -884 q^{-34} +2735 q^{-35} +3600 q^{-36} +1429 q^{-37} -1485 q^{-38} -2692 q^{-39} -1593 q^{-40} +543 q^{-41} +1830 q^{-42} +1422 q^{-43} +36 q^{-44} -1072 q^{-45} -1113 q^{-46} -301 q^{-47} +540 q^{-48} +746 q^{-49} +347 q^{-50} -193 q^{-51} -446 q^{-52} -294 q^{-53} +34 q^{-54} +236 q^{-55} +190 q^{-56} +26 q^{-57} -95 q^{-58} -116 q^{-59} -42 q^{-60} +45 q^{-61} +58 q^{-62} +18 q^{-63} -6 q^{-64} -21 q^{-65} -23 q^{-66} +6 q^{-67} +13 q^{-68} +2 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{84}-3 q^{83}+2 q^{82}+4 q^{81}-6 q^{80}-2 q^{79}-q^{78}+14 q^{77}-7 q^{76}-q^{75}+21 q^{74}-36 q^{73}-24 q^{72}-3 q^{71}+68 q^{70}+26 q^{69}+10 q^{68}+47 q^{67}-165 q^{66}-166 q^{65}-60 q^{64}+255 q^{63}+255 q^{62}+222 q^{61}+183 q^{60}-583 q^{59}-805 q^{58}-583 q^{57}+505 q^{56}+1060 q^{55}+1356 q^{54}+1143 q^{53}-1175 q^{52}-2662 q^{51}-2873 q^{50}-298 q^{49}+2254 q^{48}+4613 q^{47}+4970 q^{46}-202 q^{45}-5504 q^{44}-8702 q^{43}-5038 q^{42}+1365 q^{41}+9631 q^{40}+13916 q^{39}+6142 q^{38}-6085 q^{37}-17419 q^{36}-16308 q^{35}-6154 q^{34}+12392 q^{33}+26764 q^{32}+20456 q^{31}+655 q^{30}-24126 q^{29}-32162 q^{28}-22522 q^{27}+7565 q^{26}+37724 q^{25}+39809 q^{24}+16353 q^{23}-23280 q^{22}-46107 q^{21}-43764 q^{20}-5863 q^{19}+41144 q^{18}+57063 q^{17}+36348 q^{16}-14213 q^{15}-52623 q^{14}-62465 q^{13}-23006 q^{12}+36529 q^{11}+66871 q^{10}+53604 q^9-1437 q^8-51360 q^7-73801 q^6-37744 q^5+27760 q^4+68954 q^3+64272 q^2+10197 q-45553-77764 q^{-1} -47408 q^{-2} +18458 q^{-3} +65948 q^{-4} +68839 q^{-5} +19152 q^{-6} -37814 q^{-7} -76599 q^{-8} -52952 q^{-9} +9292 q^{-10} +59637 q^{-11} +69304 q^{-12} +26675 q^{-13} -28185 q^{-14} -71459 q^{-15} -56063 q^{-16} -1056 q^{-17} +49597 q^{-18} +66234 q^{-19} +33915 q^{-20} -15434 q^{-21} -61480 q^{-22} -56500 q^{-23} -13004 q^{-24} +34702 q^{-25} +58150 q^{-26} +39502 q^{-27} +65 q^{-28} -45519 q^{-29} -51820 q^{-30} -23870 q^{-31} +16060 q^{-32} +43584 q^{-33} +39740 q^{-34} +14429 q^{-35} -25239 q^{-36} -39997 q^{-37} -28734 q^{-38} -1411 q^{-39} +24455 q^{-40} +32015 q^{-41} +21942 q^{-42} -6334 q^{-43} -23166 q^{-44} -24707 q^{-45} -11495 q^{-46} +6871 q^{-47} +18726 q^{-48} +19971 q^{-49} +4875 q^{-50} -7707 q^{-51} -14685 q^{-52} -12040 q^{-53} -3182 q^{-54} +6384 q^{-55} +12097 q^{-56} +6920 q^{-57} +903 q^{-58} -5206 q^{-59} -7072 q^{-60} -5060 q^{-61} -208 q^{-62} +4665 q^{-63} +4072 q^{-64} +2696 q^{-65} -342 q^{-66} -2336 q^{-67} -3022 q^{-68} -1544 q^{-69} +917 q^{-70} +1252 q^{-71} +1561 q^{-72} +669 q^{-73} -200 q^{-74} -1062 q^{-75} -880 q^{-76} -27 q^{-77} +95 q^{-78} +487 q^{-79} +368 q^{-80} +189 q^{-81} -234 q^{-82} -281 q^{-83} -50 q^{-84} -78 q^{-85} +83 q^{-86} +97 q^{-87} +106 q^{-88} -37 q^{-89} -61 q^{-90} -3 q^{-91} -35 q^{-92} +6 q^{-93} +12 q^{-94} +32 q^{-95} -6 q^{-96} -13 q^{-97} +5 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>q^{112}-3 q^{111}+2 q^{110}+4 q^{109}-6 q^{108}-2 q^{107}-q^{106}+10 q^{105}+9 q^{104}-19 q^{103}+5 q^{102}+7 q^{101}-23 q^{100}-11 q^{99}-3 q^{98}+54 q^{97}+66 q^{96}-43 q^{95}-26 q^{94}-48 q^{93}-120 q^{92}-41 q^{91}+10 q^{90}+256 q^{89}+360 q^{88}+57 q^{87}-118 q^{86}-439 q^{85}-697 q^{84}-416 q^{83}-11 q^{82}+938 q^{81}+1661 q^{80}+1136 q^{79}+234 q^{78}-1533 q^{77}-3073 q^{76}-2855 q^{75}-1462 q^{74}+2017 q^{73}+5545 q^{72}+6200 q^{71}+4188 q^{70}-1697 q^{69}-8598 q^{68}-11668 q^{67}-9984 q^{66}-939 q^{65}+11553 q^{64}+19699 q^{63}+20162 q^{62}+7772 q^{61}-12632 q^{60}-29561 q^{59}-35566 q^{58}-21280 q^{57}+8931 q^{56}+39285 q^{55}+56377 q^{54}+43541 q^{53}+2667 q^{52}-45848 q^{51}-80761 q^{50}-74920 q^{49}-25322 q^{48}+44770 q^{47}+105238 q^{46}+114826 q^{45}+60818 q^{44}-32714 q^{43}-125498 q^{42}-159320 q^{41}-108154 q^{40}+6363 q^{39}+136276 q^{38}+204052 q^{37}+165116 q^{36}+34010 q^{35}-134696 q^{34}-243111 q^{33}-225975 q^{32}-86496 q^{31}+118414 q^{30}+272168 q^{29}+285618 q^{28}+146556 q^{27}-89189 q^{26}-288323 q^{25}-338081 q^{24}-208618 q^{23}+49860 q^{22}+290962 q^{21}+379836 q^{20}+267301 q^{19}-5088 q^{18}-281941 q^{17}-409021 q^{16}-318196 q^{15}-40378 q^{14}+264251 q^{13}+425772 q^{12}+358976 q^{11}+82746 q^{10}-241485 q^9-432054 q^8-389088 q^7-119422 q^6+216898 q^5+430356 q^4+409333 q^3+149583 q^2-192532 q-423183-421788 q^{-1} -173788 q^{-2} +169564 q^{-3} +412620 q^{-4} +428330 q^{-5} +193300 q^{-6} -147605 q^{-7} -399497 q^{-8} -430936 q^{-9} -210137 q^{-10} +125684 q^{-11} +384105 q^{-12} +430664 q^{-13} +225747 q^{-14} -102197 q^{-15} -365409 q^{-16} -427749 q^{-17} -241544 q^{-18} +75535 q^{-19} +342270 q^{-20} +421529 q^{-21} +257631 q^{-22} -44562 q^{-23} -312837 q^{-24} -410688 q^{-25} -273437 q^{-26} +9110 q^{-27} +276036 q^{-28} +393037 q^{-29} +286912 q^{-30} +30306 q^{-31} -231134 q^{-32} -367093 q^{-33} -295693 q^{-34} -70743 q^{-35} +179153 q^{-36} +330748 q^{-37} +296342 q^{-38} +109569 q^{-39} -121869 q^{-40} -284915 q^{-41} -286634 q^{-42} -141581 q^{-43} +63812 q^{-44} +230046 q^{-45} +264303 q^{-46} +163756 q^{-47} -9038 q^{-48} -170584 q^{-49} -230685 q^{-50} -172069 q^{-51} -36434 q^{-52} +110653 q^{-53} +187209 q^{-54} +166245 q^{-55} +69551 q^{-56} -56314 q^{-57} -139368 q^{-58} -147372 q^{-59} -87038 q^{-60} +12099 q^{-61} +91670 q^{-62} +119293 q^{-63} +90197 q^{-64} +18811 q^{-65} -50124 q^{-66} -87023 q^{-67} -81246 q^{-68} -35776 q^{-69} +17916 q^{-70} +55884 q^{-71} +64964 q^{-72} +40523 q^{-73} +3154 q^{-74} -29803 q^{-75} -46006 q^{-76} -36794 q^{-77} -13917 q^{-78} +11200 q^{-79} +28515 q^{-80} +28303 q^{-81} +16730 q^{-82} +106 q^{-83} -14834 q^{-84} -18971 q^{-85} -14824 q^{-86} -5135 q^{-87} +5906 q^{-88} +10887 q^{-89} +10739 q^{-90} +6184 q^{-91} -907 q^{-92} -5177 q^{-93} -6764 q^{-94} -5221 q^{-95} -1033 q^{-96} +1882 q^{-97} +3592 q^{-98} +3494 q^{-99} +1452 q^{-100} -168 q^{-101} -1623 q^{-102} -2149 q^{-103} -1162 q^{-104} -277 q^{-105} +598 q^{-106} +1047 q^{-107} +671 q^{-108} +429 q^{-109} -79 q^{-110} -538 q^{-111} -402 q^{-112} -265 q^{-113} +9 q^{-114} +202 q^{-115} +121 q^{-116} +170 q^{-117} +90 q^{-118} -86 q^{-119} -87 q^{-120} -87 q^{-121} -16 q^{-122} +42 q^{-123} -5 q^{-124} +31 q^{-125} +35 q^{-126} -6 q^{-127} -12 q^{-128} -23 q^{-129} -3 q^{-130} +13 q^{-131} -5 q^{-132} +7 q^{-134} -5 q^{-137} +3 q^{-139} - q^{-140} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 30]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 30]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], |
X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], |
||
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></ |
X[12, 17, 13, 18], X[6, 14, 7, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 30]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 30]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 30]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 30]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, 2, -1, 2, -3, 2, -3}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 30]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, 16, 6, 18, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 30]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_30_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 30]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 30]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, 2, -1, 2, -3, 2, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 30]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 12 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 30]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 30]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_30_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 30]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 30]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 12 2 3 |
|||
17 - t + -- - -- - 12 t + 5 t - t |
17 - t + -- - -- - 12 t + 5 t - t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 30]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 30]][z]</nowiki></code></td></tr> |
|||
1 - z - z - z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - z - z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 30]], KnotSignature[Knot[9, 30]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{53, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 5 8 9 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 30], Knot[11, NonAlternating, 130]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 30]], KnotSignature[Knot[9, 30]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{53, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 30]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 5 8 9 2 3 4 |
|||
9 - q + -- - -- + -- - - - 8 q + 6 q - 3 q + q |
9 - q + -- - -- + -- - - - 8 q + 6 q - 3 q + q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 30]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 30], Knot[11, NonAlternating, 114]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 30]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -12 -10 3 -6 -2 2 4 6 8 |
|||
-3 - q + q - q + -- + q + q + q - 2 q + q + 2 q - |
-3 - q + q - q + -- + q + q + q - 2 q + q + 2 q - |
||
8 |
8 |
||
Line 144: | Line 177: | ||
10 12 |
10 12 |
||
q + q</nowiki></ |
q + q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 30]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 30]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
2 2 4 2 2 z 2 2 4 2 4 z |
2 2 4 2 2 z 2 2 4 2 4 z |
||
-4 + -- + 4 a - a - 7 z + ---- + 5 a z - a z - 4 z + -- + |
-4 + -- + 4 a - a - 7 z + ---- + 5 a z - a z - 4 z + -- + |
||
Line 154: | Line 191: | ||
2 4 6 |
2 4 6 |
||
2 a z - z</nowiki></ |
2 a z - z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 30]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 30]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 2 4 z z 3 5 2 z |
2 2 4 z z 3 5 2 z |
||
-4 - -- - 4 a - a + -- + - + a z + 2 a z + a z + 17 z - -- + |
-4 - -- - 4 a - a + -- + - + a z + 2 a z + a z + 17 z - -- + |
||
Line 182: | Line 223: | ||
8 2 8 |
8 2 8 |
||
z + a z</nowiki></ |
z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 30]], Vassiliev[3][Knot[9, 30]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 30]], Vassiliev[3][Knot[9, 30]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 30]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 30]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 1 2 1 3 2 5 3 |
|||
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 199: | Line 248: | ||
9 4 |
9 4 |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 30], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 30], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 10 13 6 33 26 25 64 31 50 85 |
|||
85 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
85 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
||
14 12 11 10 9 8 7 6 5 4 3 |
14 12 11 10 9 8 7 6 5 4 3 |
||
Line 213: | Line 266: | ||
9 10 11 12 |
9 10 11 12 |
||
8 q + 2 q - 3 q + q</nowiki></ |
8 q + 2 q - 3 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 30's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
Gauss code | 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6 |
Dowker-Thistlethwaite code | 4 8 10 14 2 16 6 18 12 |
Conway Notation | [211,21,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
[{2, 12}, {1, 6}, {11, 4}, {12, 10}, {8, 11}, {7, 9}, {6, 8}, {3, 5}, {4, 7}, {5, 2}, {9, 3}, {10, 1}] |
[edit Notes on presentations of 9 30]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 30"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, -9, 5, -3, 4, -2, 7, -8, 9, -5, 6, -7, 8, -6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 14 2 16 6 18 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,21,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 12}, {1, 6}, {11, 4}, {12, 10}, {8, 11}, {7, 9}, {6, 8}, {3, 5}, {4, 7}, {5, 2}, {9, 3}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 30"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 53, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n130,}
Same Jones Polynomial (up to mirroring, ): {K11n114,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 30"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n130,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n114,} |
Vassiliev invariants
V2 and V3: | (-1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 30. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|