L9a33: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| (4 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!--  -->  | 
  |||
<!-- This  | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
<!--  -->  | 
  |||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
|||
<!-- -->  | 
  |||
<!-- <math>\text{Null}</math> -->  | 
|||
<!-- provide an anchor so we can return to the top of the page -->  | 
  |||
<!-- <math>\text{Null}</math> -->  | 
|||
<span id="top"></span>  | 
  |||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- -->  | 
  |||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
|||
<!-- this relies on transclusion for next and previous links -->  | 
  |||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.  | 
|||
{{Knot Navigation Links|ext=gif}}  | 
  |||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
|||
| ⚫ | |||
<!-- <math>\text{Null}</math> -->  | 
|||
{{Link Page|  | 
|||
<br style="clear:both" />  | 
  |||
n = 9 |  | 
|||
t = a |  | 
|||
{{:{{PAGENAME}} Further Notes and Views}}  | 
  |||
k = 33 |  | 
|||
| ⚫ | |||
{{Link Presentations}}  | 
  |||
braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">  | 
|||
{{Link Polynomial Invariants}}  | 
  |||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
{{Vassiliev Invariants}}  | 
  |||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
{{Khovanov Homology|table=<table border=1>  | 
  |||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
| ⚫ | |||
khovanov_table  = <table border=1>  | 
|||
<tr align=center>  | 
  <tr align=center>  | 
||
<td width=14.2857%><table cellpadding=0 cellspacing=0>  | 
  <td width=14.2857%><table cellpadding=0 cellspacing=0>  | 
||
  <tr><td>\</td><td> </td><td>r</td></tr>  | 
|||
<tr><td> </td><td> \ </td><td> </td></tr>  | 
  <tr><td> </td><td> \ </td><td> </td></tr>  | 
||
<tr><td>j</td><td> </td><td>\</td></tr>  | 
  <tr><td>j</td><td> </td><td>\</td></tr>  | 
||
</table></td>  | 
  </table></td>  | 
||
  <td width=7.14286%>-6</td    ><td width=7.14286%>-5</td    ><td width=7.14286%>-4</td    ><td width=7.14286%>-3</td    ><td width=7.14286%>-2</td    ><td width=7.14286%>-1</td    ><td width=7.14286%>0</td    ><td width=7.14286%>1</td    ><td width=7.14286%>2</td    ><td width=7.14286%>3</td    ><td width=14.2857%>χ</td></tr>  | 
|||
<tr align=center><td>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr>  | 
  <tr align=center><td>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr>  | 
||
<tr align=center><td>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>3</td></tr>  | 
  <tr align=center><td>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>3</td></tr>  | 
||
| Line 38: | Line 42: | ||
<tr align=center><td>-12</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr>  | 
  <tr align=center><td>-12</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr>  | 
||
<tr align=center><td>-14</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  <tr align=center><td>-14</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
||
</table>  | 
  </table> |  | 
||
computer_talk =  | 
|||
         <table>  | 
|||
{{Computer Talk Header}}  | 
  |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
         </tr>  | 
|||
| ⚫ | |||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>  | 
|||
| ⚫ | |||
| ⚫ | |||
</tr>  | 
  |||
<tr valign=top><td  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[9, Alternating, 33]]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[9, Alternating, 33]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[18, 10, 7, 9], X[10, 14, 11, 13],   | 
||
  X[16, 5, 17, 6], X[14, 18, 15, 17], X[2, 7, 3, 8], X[4, 11, 5, 12],   | 
    X[16, 5, 17, 6], X[14, 18, 15, 17], X[2, 7, 3, 8], X[4, 11, 5, 12],   | 
||
  X[6, 15, 1, 16]]</nowiki></pre></td></tr>  | 
    X[6, 15, 1, 16]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[9, Alternating, 33]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -7, 2, -8, 5, -9},   | 
||
  {7, -1, 3, -4, 8, -2, 4, -6, 9, -5, 6, -3}]</nowiki></pre></td></tr>  | 
    {7, -1, 3, -4, 8, -2, 4, -6, 9, -5, 6, -3}]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 33]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, -3, -2, 1, -2, -4, 3, -2, 1, -2, -3, 4, 3, -2}]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  | 
           <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 33]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L9a33_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
||
<tr valign=top><td><pre  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[9, Alternating, 33]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 33]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -(13/2)     2      6      7      9      10       8  | 
||
| ⚫ | |||
| ⚫ | |||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -1}</nowiki></pre></td></tr>  | 
  |||
| ⚫ | |||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -(13/2)     2      6      7      9      10       8  | 
  |||
-q        + ----- - ---- + ---- - ---- + ---- - ------- + 6 Sqrt[q] -   | 
  -q        + ----- - ---- + ---- - ---- + ---- - ------- + 6 Sqrt[q] -   | 
||
             11/2    9/2    7/2    5/2    3/2   Sqrt[q]  | 
               11/2    9/2    7/2    5/2    3/2   Sqrt[q]  | 
||
| Line 78: | Line 77: | ||
     3/2    5/2  | 
       3/2    5/2  | 
||
  4 q    + q</nowiki></pre></td></tr>  | 
    4 q    + q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 33]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -22    2     2     4     2     -8   2    2     2      6    8  | 
||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>  | 
  |||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 33]][q]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -22    2     2     4     2     -8   2    2     2      6    8  | 
  |||
3 + q    + --- + --- + --- + --- - q   - -- - -- - q  + 2 q  - q  | 
  3 + q    + --- + --- + --- + --- - q   - -- - -- - q  + 2 q  - q  | 
||
            20    16    14    10          6    2  | 
              20    16    14    10          6    2  | 
||
           q     q     q     q           q    q</nowiki></pre></td></tr>  | 
             q     q     q     q           q    q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[9, Alternating, 33]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>   5     7                              3  | 
||
  a     a               3        5     z         3      3  3      5  | 
|||
-(--) + -- - 3 a z + 3 a  z - 3 a  z + -- - 2 a z  + 3 a  z  - a z  | 
|||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
  6   a    a               3      5        7        2       2  2  | 
    6   a    a               3      5        7        2       2  2  | 
||
-a  + -- + -- - 2 a z + 2 a  z + a  z - 3 a  z - 3 z  - 14 a  z  -   | 
  -a  + -- + -- - 2 a z + 2 a  z + a  z - 3 a  z - 3 z  - 14 a  z  -   | 
||
| Line 108: | Line 109: | ||
     5  7    2  8    4  8  | 
       5  7    2  8    4  8  | 
||
  3 a  z  - a  z  - a  z</nowiki></pre></td></tr>  | 
    3 a  z  - a  z  - a  z</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 33]][q, t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>    4      1        1        2        4        2       3       4  | 
||
{0, -(---)}  | 
  |||
| ⚫ | |||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 33]][q, t]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>    4      1        1        2        4        2       3       4  | 
  |||
5 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- +   | 
  5 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- +   | 
||
     2    14  6    12  6    12  5    10  4    8  4    8  3    6  3  | 
       2    14  6    12  6    12  5    10  4    8  4    8  3    6  3  | 
||
| Line 122: | Line 119: | ||
   6  2    4  2    4      2  | 
     6  2    4  2    4      2  | 
||
  q  t    q  t    q  t   q  t</nowiki></pre></td></tr>  | 
    q  t    q  t    q  t   q  t</nowiki></pre></td></tr>  | 
||
</table>  | 
           </table> }}  | 
||
 [[Category:Knot Page]]  | 
  |||
Latest revision as of 02:39, 3 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
| 
 L9a33 is in the Rolfsen table of links.  | 
   With an hypotrochoid [1].  | ||||
Link Presentations
[edit Notes on L9a33's Link Presentations]
| Planar diagram presentation | X8192 X12,3,13,4 X18,10,7,9 X10,14,11,13 X16,5,17,6 X14,18,15,17 X2738 X4,11,5,12 X6,15,1,16 | 
| Gauss code | {1, -7, 2, -8, 5, -9}, {7, -1, 3, -4, 8, -2, 4, -6, 9, -5, 6, -3} | 
| A Braid Representative | ||||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -1 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 










