8 1: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 8 | |
n = 8 | |
||
Line 45: | Line 45: | ||
coloured_jones_5 = <math>q^{30}-q^{29}+q^{24}-2 q^{23}+q^{21}+q^{19}+q^{18}-4 q^{17}-q^{16}+2 q^{15}+2 q^{14}+2 q^{13}+q^{12}-6 q^{11}-3 q^{10}+4 q^9+4 q^8+3 q^7-2 q^6-8 q^5-3 q^4+6 q^3+7 q^2+3 q-5-11 q^{-1} -3 q^{-2} +9 q^{-3} +9 q^{-4} +4 q^{-5} -7 q^{-6} -13 q^{-7} -5 q^{-8} +9 q^{-9} +12 q^{-10} +5 q^{-11} -7 q^{-12} -13 q^{-13} -5 q^{-14} +7 q^{-15} +13 q^{-16} +5 q^{-17} -7 q^{-18} -11 q^{-19} -4 q^{-20} +5 q^{-21} +12 q^{-22} +4 q^{-23} -6 q^{-24} -10 q^{-25} -5 q^{-26} +4 q^{-27} +11 q^{-28} +5 q^{-29} -4 q^{-30} -10 q^{-31} -6 q^{-32} +3 q^{-33} +10 q^{-34} +6 q^{-35} -2 q^{-36} -9 q^{-37} -7 q^{-38} +2 q^{-39} +8 q^{-40} +6 q^{-41} -7 q^{-43} -7 q^{-44} +6 q^{-46} +6 q^{-47} + q^{-48} -4 q^{-49} -5 q^{-50} -2 q^{-51} +3 q^{-52} +5 q^{-53} + q^{-54} -2 q^{-55} -3 q^{-56} -2 q^{-57} + q^{-58} +3 q^{-59} + q^{-60} - q^{-61} -2 q^{-62} - q^{-63} + q^{-64} +2 q^{-65} + q^{-66} - q^{-67} -2 q^{-68} - q^{-69} +3 q^{-71} +2 q^{-72} - q^{-73} -2 q^{-74} -2 q^{-75} - q^{-76} +2 q^{-77} +3 q^{-78} - q^{-80} - q^{-81} -2 q^{-82} +2 q^{-84} + q^{-85} - q^{-88} - q^{-89} + q^{-90} </math> | |
coloured_jones_5 = <math>q^{30}-q^{29}+q^{24}-2 q^{23}+q^{21}+q^{19}+q^{18}-4 q^{17}-q^{16}+2 q^{15}+2 q^{14}+2 q^{13}+q^{12}-6 q^{11}-3 q^{10}+4 q^9+4 q^8+3 q^7-2 q^6-8 q^5-3 q^4+6 q^3+7 q^2+3 q-5-11 q^{-1} -3 q^{-2} +9 q^{-3} +9 q^{-4} +4 q^{-5} -7 q^{-6} -13 q^{-7} -5 q^{-8} +9 q^{-9} +12 q^{-10} +5 q^{-11} -7 q^{-12} -13 q^{-13} -5 q^{-14} +7 q^{-15} +13 q^{-16} +5 q^{-17} -7 q^{-18} -11 q^{-19} -4 q^{-20} +5 q^{-21} +12 q^{-22} +4 q^{-23} -6 q^{-24} -10 q^{-25} -5 q^{-26} +4 q^{-27} +11 q^{-28} +5 q^{-29} -4 q^{-30} -10 q^{-31} -6 q^{-32} +3 q^{-33} +10 q^{-34} +6 q^{-35} -2 q^{-36} -9 q^{-37} -7 q^{-38} +2 q^{-39} +8 q^{-40} +6 q^{-41} -7 q^{-43} -7 q^{-44} +6 q^{-46} +6 q^{-47} + q^{-48} -4 q^{-49} -5 q^{-50} -2 q^{-51} +3 q^{-52} +5 q^{-53} + q^{-54} -2 q^{-55} -3 q^{-56} -2 q^{-57} + q^{-58} +3 q^{-59} + q^{-60} - q^{-61} -2 q^{-62} - q^{-63} + q^{-64} +2 q^{-65} + q^{-66} - q^{-67} -2 q^{-68} - q^{-69} +3 q^{-71} +2 q^{-72} - q^{-73} -2 q^{-74} -2 q^{-75} - q^{-76} +2 q^{-77} +3 q^{-78} - q^{-80} - q^{-81} -2 q^{-82} +2 q^{-84} + q^{-85} - q^{-88} - q^{-89} + q^{-90} </math> | |
||
coloured_jones_6 = <math>q^{42}-q^{41}-q^{36}+2 q^{35}-2 q^{34}+q^{33}+q^{30}-2 q^{29}+2 q^{28}-4 q^{27}+2 q^{26}+q^{25}+q^{24}+3 q^{23}-3 q^{22}+q^{21}-7 q^{20}+3 q^{19}+q^{18}+2 q^{17}+5 q^{16}-4 q^{15}+q^{14}-9 q^{13}+5 q^{12}+q^{10}+5 q^9-5 q^8+3 q^7-8 q^6+8 q^5-2 q^4-3 q^3+3 q^2-6 q+6-5 q^{-1} +13 q^{-2} -3 q^{-3} -6 q^{-4} -9 q^{-6} +6 q^{-7} -3 q^{-8} +18 q^{-9} -2 q^{-10} -6 q^{-11} - q^{-12} -12 q^{-13} +3 q^{-14} -3 q^{-15} +20 q^{-16} - q^{-17} -5 q^{-18} -11 q^{-20} +2 q^{-21} -4 q^{-22} +18 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} -10 q^{-27} +3 q^{-28} -5 q^{-29} +16 q^{-30} -2 q^{-31} -4 q^{-32} +2 q^{-33} -9 q^{-34} +3 q^{-35} -7 q^{-36} +14 q^{-37} - q^{-39} +3 q^{-40} -9 q^{-41} +2 q^{-42} -10 q^{-43} +11 q^{-44} +3 q^{-45} +2 q^{-46} +4 q^{-47} -9 q^{-48} -13 q^{-50} +9 q^{-51} +5 q^{-52} +5 q^{-53} +5 q^{-54} -9 q^{-55} - q^{-56} -15 q^{-57} +6 q^{-58} +6 q^{-59} +7 q^{-60} +7 q^{-61} -7 q^{-62} - q^{-63} -15 q^{-64} +2 q^{-65} +4 q^{-66} +7 q^{-67} +8 q^{-68} -4 q^{-69} + q^{-70} -14 q^{-71} - q^{-72} + q^{-73} +5 q^{-74} +7 q^{-75} - q^{-76} +5 q^{-77} -11 q^{-78} -2 q^{-79} - q^{-80} +2 q^{-81} +4 q^{-82} +7 q^{-84} -8 q^{-85} - q^{-86} - q^{-87} + q^{-89} +7 q^{-91} -7 q^{-92} +7 q^{-98} -6 q^{-99} - q^{-100} - q^{-101} + q^{-104} +7 q^{-105} -4 q^{-106} - q^{-107} -2 q^{-108} - q^{-109} - q^{-110} +6 q^{-112} - q^{-113} - q^{-115} - q^{-116} -2 q^{-117} - q^{-118} +3 q^{-119} + q^{-121} - q^{-124} - q^{-125} + q^{-126} </math> | |
coloured_jones_6 = <math>q^{42}-q^{41}-q^{36}+2 q^{35}-2 q^{34}+q^{33}+q^{30}-2 q^{29}+2 q^{28}-4 q^{27}+2 q^{26}+q^{25}+q^{24}+3 q^{23}-3 q^{22}+q^{21}-7 q^{20}+3 q^{19}+q^{18}+2 q^{17}+5 q^{16}-4 q^{15}+q^{14}-9 q^{13}+5 q^{12}+q^{10}+5 q^9-5 q^8+3 q^7-8 q^6+8 q^5-2 q^4-3 q^3+3 q^2-6 q+6-5 q^{-1} +13 q^{-2} -3 q^{-3} -6 q^{-4} -9 q^{-6} +6 q^{-7} -3 q^{-8} +18 q^{-9} -2 q^{-10} -6 q^{-11} - q^{-12} -12 q^{-13} +3 q^{-14} -3 q^{-15} +20 q^{-16} - q^{-17} -5 q^{-18} -11 q^{-20} +2 q^{-21} -4 q^{-22} +18 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} -10 q^{-27} +3 q^{-28} -5 q^{-29} +16 q^{-30} -2 q^{-31} -4 q^{-32} +2 q^{-33} -9 q^{-34} +3 q^{-35} -7 q^{-36} +14 q^{-37} - q^{-39} +3 q^{-40} -9 q^{-41} +2 q^{-42} -10 q^{-43} +11 q^{-44} +3 q^{-45} +2 q^{-46} +4 q^{-47} -9 q^{-48} -13 q^{-50} +9 q^{-51} +5 q^{-52} +5 q^{-53} +5 q^{-54} -9 q^{-55} - q^{-56} -15 q^{-57} +6 q^{-58} +6 q^{-59} +7 q^{-60} +7 q^{-61} -7 q^{-62} - q^{-63} -15 q^{-64} +2 q^{-65} +4 q^{-66} +7 q^{-67} +8 q^{-68} -4 q^{-69} + q^{-70} -14 q^{-71} - q^{-72} + q^{-73} +5 q^{-74} +7 q^{-75} - q^{-76} +5 q^{-77} -11 q^{-78} -2 q^{-79} - q^{-80} +2 q^{-81} +4 q^{-82} +7 q^{-84} -8 q^{-85} - q^{-86} - q^{-87} + q^{-89} +7 q^{-91} -7 q^{-92} +7 q^{-98} -6 q^{-99} - q^{-100} - q^{-101} + q^{-104} +7 q^{-105} -4 q^{-106} - q^{-107} -2 q^{-108} - q^{-109} - q^{-110} +6 q^{-112} - q^{-113} - q^{-115} - q^{-116} -2 q^{-117} - q^{-118} +3 q^{-119} + q^{-121} - q^{-124} - q^{-125} + q^{-126} </math> | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 52: | Line 52: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 1]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[5, 16, 6, 1], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7]]</nowiki></ |
X[5, 16, 6, 1], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 1]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 1]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 1]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[8, 1]]&) /@ { |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 16, 14, 12, 2, 8, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, -2, 1, -2, -3, 2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 1]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:8_1_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 1]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 1, 2, {4, 5}, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 1, 2, {4, 5}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 1]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
7 - - - 3 t |
7 - - - 3 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 1]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 - 3 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 1]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 1]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
1 - 3 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 1]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -4 2 2 2 2 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 1]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 1]], KnotSignature[Knot[8, 1]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{13, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 1]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -5 -4 2 2 2 2 |
|||
2 + q - q + q - -- + -- - - - q + q |
2 + q - q + q - -- + -- - - - q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 1], Knot[11, NonAlternating, 70]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
q + q - q - q + q + q + q</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 1], Knot[11, NonAlternating, 70]}</nowiki></code></td></tr> |
|||
</table> |
|||
a - a + a - z - a z - a z</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 1]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 1]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 -18 -12 -10 2 6 8 |
|||
q + q - q - q + q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 6 2 2 2 4 2 |
|||
a - a + a - z - a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 1]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 |
|||
-2 4 6 3 5 z 4 2 6 2 z 3 |
-2 4 6 3 5 z 4 2 6 2 z 3 |
||
-a - a - a - 3 a z - 3 a z + -- + 7 a z + 6 a z + -- - a z + |
-a - a - a - 3 a z - 3 a z + -- + 7 a z + 6 a z + -- - a z + |
||
Line 108: | Line 194: | ||
3 5 5 5 2 6 4 6 6 6 3 7 5 7 |
3 5 5 5 2 6 4 6 6 6 3 7 5 7 |
||
4 a z - 5 a z + a z + 2 a z + a z + a z + a z</nowiki></ |
4 a z - 5 a z + a z + 2 a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 1]], Vassiliev[3][Knot[8, 1]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, 3}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 1]], Vassiliev[3][Knot[8, 1]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, 3}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 1]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1 1 1 1 1 1 1 1 |
|||
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 9 5 9 4 7 3 5 3 5 2 3 2 |
q 13 6 9 5 9 4 7 3 5 3 5 2 3 2 |
||
Line 120: | Line 216: | ||
---- + --- + q t + q t |
---- + --- + q t + q t |
||
3 q t |
3 q t |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 1], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -17 -16 2 -14 2 3 3 3 3 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 1], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 -17 -16 2 -14 2 3 3 3 3 3 |
|||
2 + q - q - q + --- - q - --- + --- - --- + -- - -- + -- + |
2 + q - q - q + --- - q - --- + --- - --- + -- - -- + -- + |
||
15 13 12 10 9 7 6 |
15 13 12 10 9 7 6 |
||
Line 130: | Line 231: | ||
q - -- + -- + q - - - 2 q + 2 q - q + q |
q - -- + -- + q - - - 2 q + 2 q - q + q |
||
4 3 q |
4 3 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,16,6,1 X7,14,8,15 X13,8,14,9 X15,6,16,7 |
Gauss code | -1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5 |
Dowker-Thistlethwaite code | 4 10 16 14 12 2 8 6 |
Conway Notation | [62] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{10, 7}, {6, 8}, {7, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {9, 2}, {8, 10}, {1, 9}] |
[edit Notes on presentations of 8 1]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 1"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,16,6,1 X7,14,8,15 X13,8,14,9 X15,6,16,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 16 14 12 2 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[62] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 7}, {6, 8}, {7, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {9, 2}, {8, 10}, {1, 9}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n70,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 1"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n70,} |
Vassiliev invariants
V2 and V3: | (-3, 3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|