9 26: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=9_26}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 9 | |
|||
k = 26 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,9,-8,3,-4,2,-5,6,-9,8,-7,5/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 9 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[K11n25]], | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{20}-3 q^{19}+q^{18}+8 q^{17}-14 q^{16}+q^{15}+25 q^{14}-31 q^{13}-3 q^{12}+48 q^{11}-46 q^{10}-12 q^9+64 q^8-49 q^7-20 q^6+64 q^5-37 q^4-23 q^3+48 q^2-19 q-19+26 q^{-1} -5 q^{-2} -11 q^{-3} +9 q^{-4} -3 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>q^{39}-3 q^{38}+q^{37}+4 q^{36}+q^{35}-11 q^{34}-2 q^{33}+22 q^{32}+4 q^{31}-36 q^{30}-11 q^{29}+57 q^{28}+22 q^{27}-82 q^{26}-42 q^{25}+111 q^{24}+66 q^{23}-135 q^{22}-99 q^{21}+158 q^{20}+130 q^{19}-169 q^{18}-162 q^{17}+174 q^{16}+186 q^{15}-168 q^{14}-201 q^{13}+151 q^{12}+210 q^{11}-130 q^{10}-206 q^9+98 q^8+200 q^7-73 q^6-175 q^5+33 q^4+161 q^3-15 q^2-123 q-14+101 q^{-1} +20 q^{-2} -65 q^{-3} -29 q^{-4} +43 q^{-5} +24 q^{-6} -22 q^{-7} -19 q^{-8} +11 q^{-9} +11 q^{-10} -4 q^{-11} -5 q^{-12} +3 q^{-14} - q^{-15} </math> | |
|||
coloured_jones_4 = <math>q^{64}-3 q^{63}+q^{62}+4 q^{61}-3 q^{60}+4 q^{59}-14 q^{58}+6 q^{57}+18 q^{56}-12 q^{55}+10 q^{54}-48 q^{53}+18 q^{52}+62 q^{51}-22 q^{50}+8 q^{49}-132 q^{48}+34 q^{47}+162 q^{46}+3 q^{45}+q^{44}-313 q^{43}+5 q^{42}+325 q^{41}+128 q^{40}+33 q^{39}-594 q^{38}-130 q^{37}+483 q^{36}+355 q^{35}+166 q^{34}-885 q^{33}-363 q^{32}+548 q^{31}+593 q^{30}+383 q^{29}-1070 q^{28}-596 q^{27}+495 q^{26}+739 q^{25}+602 q^{24}-1101 q^{23}-740 q^{22}+363 q^{21}+754 q^{20}+754 q^{19}-986 q^{18}-772 q^{17}+180 q^{16}+657 q^{15}+830 q^{14}-757 q^{13}-712 q^{12}-22 q^{11}+475 q^{10}+820 q^9-453 q^8-565 q^7-201 q^6+238 q^5+711 q^4-158 q^3-349 q^2-281 q+17+502 q^{-1} +28 q^{-2} -128 q^{-3} -233 q^{-4} -106 q^{-5} +266 q^{-6} +71 q^{-7} +8 q^{-8} -120 q^{-9} -110 q^{-10} +98 q^{-11} +39 q^{-12} +38 q^{-13} -36 q^{-14} -58 q^{-15} +25 q^{-16} +8 q^{-17} +20 q^{-18} -4 q^{-19} -18 q^{-20} +4 q^{-21} +5 q^{-23} -3 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>q^{95}-3 q^{94}+q^{93}+4 q^{92}-3 q^{91}+q^{89}-6 q^{88}+2 q^{87}+13 q^{86}-5 q^{85}-11 q^{84}-3 q^{83}-3 q^{82}+17 q^{81}+28 q^{80}-6 q^{79}-49 q^{78}-46 q^{77}+13 q^{76}+84 q^{75}+102 q^{74}-157 q^{72}-206 q^{71}-32 q^{70}+248 q^{69}+362 q^{68}+139 q^{67}-330 q^{66}-620 q^{65}-335 q^{64}+392 q^{63}+928 q^{62}+666 q^{61}-364 q^{60}-1295 q^{59}-1126 q^{58}+224 q^{57}+1640 q^{56}+1709 q^{55}+61 q^{54}-1939 q^{53}-2334 q^{52}-483 q^{51}+2106 q^{50}+2980 q^{49}+1007 q^{48}-2173 q^{47}-3527 q^{46}-1566 q^{45}+2075 q^{44}+3979 q^{43}+2124 q^{42}-1911 q^{41}-4270 q^{40}-2598 q^{39}+1651 q^{38}+4423 q^{37}+2986 q^{36}-1363 q^{35}-4450 q^{34}-3264 q^{33}+1069 q^{32}+4350 q^{31}+3443 q^{30}-750 q^{29}-4165 q^{28}-3549 q^{27}+443 q^{26}+3883 q^{25}+3566 q^{24}-81 q^{23}-3539 q^{22}-3535 q^{21}-251 q^{20}+3069 q^{19}+3424 q^{18}+659 q^{17}-2580 q^{16}-3243 q^{15}-959 q^{14}+1936 q^{13}+2948 q^{12}+1330 q^{11}-1366 q^{10}-2574 q^9-1467 q^8+689 q^7+2080 q^6+1626 q^5-191 q^4-1574 q^3-1492 q^2-287 q+1017+1366 q^{-1} +526 q^{-2} -559 q^{-3} -1033 q^{-4} -673 q^{-5} +170 q^{-6} +757 q^{-7} +629 q^{-8} +67 q^{-9} -437 q^{-10} -535 q^{-11} -198 q^{-12} +232 q^{-13} +373 q^{-14} +215 q^{-15} -64 q^{-16} -240 q^{-17} -191 q^{-18} -3 q^{-19} +134 q^{-20} +125 q^{-21} +35 q^{-22} -56 q^{-23} -84 q^{-24} -36 q^{-25} +28 q^{-26} +43 q^{-27} +18 q^{-28} -2 q^{-29} -18 q^{-30} -20 q^{-31} +4 q^{-32} +11 q^{-33} +3 q^{-34} -5 q^{-37} +3 q^{-39} - q^{-40} </math> | |
|||
coloured_jones_6 = <math>q^{132}-3 q^{131}+q^{130}+4 q^{129}-3 q^{128}-3 q^{126}+9 q^{125}-10 q^{124}-3 q^{123}+20 q^{122}-15 q^{121}-5 q^{120}-8 q^{119}+35 q^{118}-16 q^{117}-9 q^{116}+48 q^{115}-56 q^{114}-41 q^{113}-29 q^{112}+120 q^{111}+13 q^{110}+21 q^{109}+110 q^{108}-185 q^{107}-202 q^{106}-160 q^{105}+271 q^{104}+184 q^{103}+259 q^{102}+359 q^{101}-404 q^{100}-692 q^{99}-715 q^{98}+260 q^{97}+508 q^{96}+1049 q^{95}+1292 q^{94}-352 q^{93}-1560 q^{92}-2228 q^{91}-642 q^{90}+477 q^{89}+2494 q^{88}+3640 q^{87}+961 q^{86}-2142 q^{85}-4826 q^{84}-3362 q^{83}-1133 q^{82}+3776 q^{81}+7474 q^{80}+4564 q^{79}-1014 q^{78}-7462 q^{77}-7860 q^{76}-5339 q^{75}+3329 q^{74}+11463 q^{73}+10163 q^{72}+2758 q^{71}-8395 q^{70}-12527 q^{69}-11525 q^{68}+327 q^{67}+13706 q^{66}+15848 q^{65}+8319 q^{64}-6842 q^{63}-15408 q^{62}-17574 q^{61}-4251 q^{60}+13448 q^{59}+19636 q^{58}+13584 q^{57}-3723 q^{56}-15842 q^{55}-21632 q^{54}-8541 q^{53}+11510 q^{52}+20960 q^{51}+17032 q^{50}-562 q^{49}-14584 q^{48}-23301 q^{47}-11424 q^{46}+9082 q^{45}+20480 q^{44}+18536 q^{43}+1925 q^{42}-12567 q^{41}-23209 q^{40}-13017 q^{39}+6577 q^{38}+18902 q^{37}+18744 q^{36}+4025 q^{35}-9996 q^{34}-21903 q^{33}-13939 q^{32}+3641 q^{31}+16275 q^{30}+18070 q^{29}+6230 q^{28}-6516 q^{27}-19309 q^{26}-14379 q^{25}-17 q^{24}+12256 q^{23}+16248 q^{22}+8380 q^{21}-2039 q^{20}-15052 q^{19}-13741 q^{18}-3837 q^{17}+6926 q^{16}+12722 q^{15}+9457 q^{14}+2570 q^{13}-9316 q^{12}-11221 q^{11}-6390 q^{10}+1428 q^9+7634 q^8+8378 q^7+5645 q^6-3440 q^5-6936 q^4-6427 q^3-2386 q^2+2408 q+5274+5972 q^{-1} +637 q^{-2} -2421 q^{-3} -4211 q^{-4} -3375 q^{-5} -1043 q^{-6} +1772 q^{-7} +4049 q^{-8} +1940 q^{-9} +469 q^{-10} -1498 q^{-11} -2226 q^{-12} -1966 q^{-13} -383 q^{-14} +1704 q^{-15} +1319 q^{-16} +1203 q^{-17} +109 q^{-18} -710 q^{-19} -1322 q^{-20} -849 q^{-21} +326 q^{-22} +386 q^{-23} +760 q^{-24} +435 q^{-25} +65 q^{-26} -517 q^{-27} -511 q^{-28} -50 q^{-29} -40 q^{-30} +259 q^{-31} +235 q^{-32} +178 q^{-33} -124 q^{-34} -183 q^{-35} -37 q^{-36} -79 q^{-37} +47 q^{-38} +66 q^{-39} +91 q^{-40} -20 q^{-41} -46 q^{-42} -3 q^{-43} -32 q^{-44} +3 q^{-45} +9 q^{-46} +29 q^{-47} -4 q^{-48} -11 q^{-49} +4 q^{-50} -7 q^{-51} +5 q^{-54} -3 q^{-56} + q^{-57} </math> | |
|||
coloured_jones_7 = <math>q^{175}-3 q^{174}+q^{173}+4 q^{172}-3 q^{171}-3 q^{169}+5 q^{168}+5 q^{167}-15 q^{166}+4 q^{165}+10 q^{164}-9 q^{163}+q^{162}-9 q^{161}+18 q^{160}+30 q^{159}-39 q^{158}-4 q^{157}+2 q^{156}-38 q^{155}+8 q^{154}-18 q^{153}+72 q^{152}+128 q^{151}-40 q^{150}-32 q^{149}-97 q^{148}-196 q^{147}-43 q^{146}-29 q^{145}+234 q^{144}+475 q^{143}+166 q^{142}+29 q^{141}-382 q^{140}-777 q^{139}-496 q^{138}-299 q^{137}+523 q^{136}+1397 q^{135}+1170 q^{134}+775 q^{133}-589 q^{132}-2133 q^{131}-2238 q^{130}-1867 q^{129}+209 q^{128}+2976 q^{127}+3962 q^{126}+3859 q^{125}+831 q^{124}-3669 q^{123}-6152 q^{122}-6934 q^{121}-3237 q^{120}+3536 q^{119}+8727 q^{118}+11480 q^{117}+7410 q^{116}-2142 q^{115}-11013 q^{114}-17113 q^{113}-13826 q^{112}-1577 q^{111}+12246 q^{110}+23582 q^{109}+22543 q^{108}+8039 q^{107}-11485 q^{106}-29839 q^{105}-33120 q^{104}-17630 q^{103}+7839 q^{102}+34850 q^{101}+44718 q^{100}+30029 q^{99}-850 q^{98}-37563 q^{97}-56110 q^{96}-44371 q^{95}-9338 q^{94}+37217 q^{93}+65925 q^{92}+59393 q^{91}+22152 q^{90}-33574 q^{89}-73308 q^{88}-73745 q^{87}-36224 q^{86}+27132 q^{85}+77469 q^{84}+86020 q^{83}+50450 q^{82}-18532 q^{81}-78644 q^{80}-95665 q^{79}-63379 q^{78}+9165 q^{77}+77112 q^{76}+102096 q^{75}+74261 q^{74}+242 q^{73}-73763 q^{72}-105780 q^{71}-82631 q^{70}-8634 q^{69}+69412 q^{68}+107020 q^{67}+88485 q^{66}+15723 q^{65}-64638 q^{64}-106546 q^{63}-92286 q^{62}-21426 q^{61}+59967 q^{60}+104969 q^{59}+94376 q^{58}+25954 q^{57}-55370 q^{56}-102562 q^{55}-95408 q^{54}-29849 q^{53}+50781 q^{52}+99604 q^{51}+95724 q^{50}+33410 q^{49}-45807 q^{48}-95872 q^{47}-95516 q^{46}-37197 q^{45}+40027 q^{44}+91288 q^{43}+94774 q^{42}+41244 q^{41}-33105 q^{40}-85283 q^{39}-93303 q^{38}-45740 q^{37}+24934 q^{36}+77726 q^{35}+90575 q^{34}+50115 q^{33}-15322 q^{32}-68123 q^{31}-86413 q^{30}-54154 q^{29}+5066 q^{28}+56812 q^{27}+79873 q^{26}+56737 q^{25}+5750 q^{24}-43635 q^{23}-71394 q^{22}-57635 q^{21}-15435 q^{20}+29857 q^{19}+60242 q^{18}+55565 q^{17}+23803 q^{16}-15745 q^{15}-47752 q^{14}-51047 q^{13}-29078 q^{12}+3342 q^{11}+33994 q^{10}+43390 q^9+31400 q^8+7164 q^7-20876 q^6-34232 q^5-30061 q^4-13954 q^3+9077 q^2+23754 q+26028+17594 q^{-1} -74 q^{-2} -14067 q^{-3} -19912 q^{-4} -17539 q^{-5} -5931 q^{-6} +5636 q^{-7} +13249 q^{-8} +15234 q^{-9} +8625 q^{-10} +251 q^{-11} -6930 q^{-12} -11303 q^{-13} -8874 q^{-14} -3797 q^{-15} +2120 q^{-16} +7236 q^{-17} +7281 q^{-18} +4985 q^{-19} +1075 q^{-20} -3583 q^{-21} -5085 q^{-22} -4758 q^{-23} -2533 q^{-24} +1132 q^{-25} +2876 q^{-26} +3557 q^{-27} +2797 q^{-28} +376 q^{-29} -1181 q^{-30} -2342 q^{-31} -2380 q^{-32} -861 q^{-33} +201 q^{-34} +1209 q^{-35} +1622 q^{-36} +918 q^{-37} +334 q^{-38} -511 q^{-39} -1055 q^{-40} -680 q^{-41} -368 q^{-42} +123 q^{-43} +520 q^{-44} +401 q^{-45} +372 q^{-46} +60 q^{-47} -287 q^{-48} -241 q^{-49} -217 q^{-50} -53 q^{-51} +107 q^{-52} +75 q^{-53} +138 q^{-54} +88 q^{-55} -51 q^{-56} -56 q^{-57} -72 q^{-58} -24 q^{-59} +27 q^{-60} -5 q^{-61} +28 q^{-62} +31 q^{-63} -3 q^{-64} -9 q^{-65} -20 q^{-66} -5 q^{-67} +11 q^{-68} -4 q^{-69} +7 q^{-71} -5 q^{-74} +3 q^{-76} - q^{-77} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 26]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[13, 18, 14, 1], X[7, 15, 8, 14], X[17, 7, 18, 6], X[9, 17, 10, 16], |
|||
X[15, 9, 16, 8]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 26]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 7, -6, 9, -8, 3, -4, 2, -5, 6, -9, 8, -7, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 26]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 18, 8, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 26]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, 1, -2, 3, -2, 3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 26]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 26]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_26_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 26]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 2, {4, 6}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 26]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 11 2 3 |
|||
-13 + t - -- + -- + 11 t - 5 t + t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 26]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 |
|||
1 + z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 26], Knot[11, NonAlternating, 25]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 26]], KnotSignature[Knot[9, 26]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{47, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 26]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 3 4 5 6 7 |
|||
-4 - q + - + 7 q - 8 q + 8 q - 7 q + 5 q - 3 q + q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 26]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 26]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -4 2 4 6 8 14 16 18 22 |
|||
1 - q + q + 3 q - q + 2 q - q - 2 q + q - q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 26]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 6 |
|||
-6 3 3 2 z 5 z 6 z 4 2 z 4 z z |
|||
a - -- + -- - 2 z + -- - ---- + ---- - z - ---- + ---- + -- |
|||
4 2 6 4 2 4 2 2 |
|||
a a a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 26]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
-6 3 3 z z z z 2 z 2 z 11 z 13 z |
|||
-a - -- - -- + -- + -- - -- - - + 5 z - -- + ---- + ----- + ----- - |
|||
4 2 7 5 3 a 8 6 4 2 |
|||
a a a a a a a a a |
|||
3 3 3 3 4 4 4 |
|||
4 z 2 z 7 z 3 z 3 4 z 5 z 14 z |
|||
---- - ---- + ---- + ---- - 2 a z - 8 z + -- - ---- - ----- - |
|||
7 5 3 a 8 6 4 |
|||
a a a a a a |
|||
4 5 5 5 5 6 6 6 |
|||
16 z 3 z z 11 z 6 z 5 6 4 z 6 z 5 z |
|||
----- + ---- - -- - ----- - ---- + a z + 3 z + ---- + ---- + ---- + |
|||
2 7 5 3 a 6 4 2 |
|||
a a a a a a a |
|||
7 7 7 8 8 |
|||
3 z 6 z 3 z z z |
|||
---- + ---- + ---- + -- + -- |
|||
5 3 a 4 2 |
|||
a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 26]], Vassiliev[3][Knot[9, 26]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 26]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 2 2 q 3 5 |
|||
5 q + 3 q + ----- + ----- + ---- + --- + --- + 4 q t + 4 q t + |
|||
5 3 3 2 2 q t t |
|||
q t q t q t |
|||
5 2 7 2 7 3 9 3 9 4 11 4 11 5 |
|||
4 q t + 4 q t + 3 q t + 4 q t + 2 q t + 3 q t + q t + |
|||
13 5 15 6 |
|||
2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 26], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 9 11 5 26 2 3 4 |
|||
-19 + q - -- + -- - -- - -- + -- - 19 q + 48 q - 23 q - 37 q + |
|||
6 4 3 2 q |
|||
q q q q |
|||
5 6 7 8 9 10 11 12 |
|||
64 q - 20 q - 49 q + 64 q - 12 q - 46 q + 48 q - 3 q - |
|||
13 14 15 16 17 18 19 20 |
|||
31 q + 25 q + q - 14 q + 8 q + q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:57, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 26's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X7,15,8,14 X17,7,18,6 X9,17,10,16 X15,9,16,8 |
Gauss code | -1, 4, -3, 1, -2, 7, -6, 9, -8, 3, -4, 2, -5, 6, -9, 8, -7, 5 |
Dowker-Thistlethwaite code | 4 10 12 14 16 2 18 8 6 |
Conway Notation | [311112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
[{11, 4}, {3, 9}, {10, 5}, {4, 6}, {9, 11}, {5, 2}, {8, 3}, {6, 1}, {7, 10}, {2, 8}, {1, 7}] |
[edit Notes on presentations of 9 26]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 26"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X7,15,8,14 X17,7,18,6 X9,17,10,16 X15,9,16,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 7, -6, 9, -8, 3, -4, 2, -5, 6, -9, 8, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 14 16 2 18 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[311112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 4}, {3, 9}, {10, 5}, {4, 6}, {9, 11}, {5, 2}, {8, 3}, {6, 1}, {7, 10}, {2, 8}, {1, 7}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 26"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 47, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n25,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 26"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n25,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 26. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|