9 19: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=9_19}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 9 |
k = 19 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,7,-6,3,-4,2,-8,9,-5,6,-7,5,-9,8/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
braid_crossings = 10 |
braid_width = 5 |
braid_index = 5 |
same_alexander = |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math>q^{12}-2 q^{11}+5 q^9-8 q^8+q^7+15 q^6-21 q^5+q^4+31 q^3-35 q^2-3 q+45-40 q^{-1} -9 q^{-2} +47 q^{-3} -33 q^{-4} -13 q^{-5} +38 q^{-6} -19 q^{-7} -14 q^{-8} +23 q^{-9} -6 q^{-10} -10 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math> |
coloured_jones_3 = <math>q^{24}-2 q^{23}+q^{21}+3 q^{20}-5 q^{19}-q^{18}+6 q^{17}+3 q^{16}-14 q^{15}+22 q^{13}+2 q^{12}-40 q^{11}-q^{10}+58 q^9+8 q^8-82 q^7-19 q^6+106 q^5+32 q^4-123 q^3-49 q^2+135 q+66-139 q^{-1} -79 q^{-2} +135 q^{-3} +89 q^{-4} -124 q^{-5} -95 q^{-6} +106 q^{-7} +100 q^{-8} -88 q^{-9} -97 q^{-10} +61 q^{-11} +97 q^{-12} -41 q^{-13} -83 q^{-14} +14 q^{-15} +75 q^{-16} - q^{-17} -55 q^{-18} -13 q^{-19} +39 q^{-20} +16 q^{-21} -22 q^{-22} -16 q^{-23} +12 q^{-24} +10 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math> |
coloured_jones_4 = <math>q^{40}-2 q^{39}+q^{37}-q^{36}+6 q^{35}-7 q^{34}+q^{33}+2 q^{32}-8 q^{31}+16 q^{30}-15 q^{29}+10 q^{28}+9 q^{27}-29 q^{26}+19 q^{25}-32 q^{24}+42 q^{23}+43 q^{22}-63 q^{21}-7 q^{20}-88 q^{19}+99 q^{18}+141 q^{17}-76 q^{16}-70 q^{15}-225 q^{14}+142 q^{13}+305 q^{12}-18 q^{11}-125 q^{10}-436 q^9+119 q^8+470 q^7+104 q^6-119 q^5-635 q^4+35 q^3+555 q^2+225 q-49-746 q^{-1} -60 q^{-2} +546 q^{-3} +294 q^{-4} +42 q^{-5} -748 q^{-6} -133 q^{-7} +460 q^{-8} +310 q^{-9} +138 q^{-10} -663 q^{-11} -191 q^{-12} +319 q^{-13} +287 q^{-14} +231 q^{-15} -507 q^{-16} -225 q^{-17} +141 q^{-18} +219 q^{-19} +299 q^{-20} -306 q^{-21} -206 q^{-22} -20 q^{-23} +107 q^{-24} +295 q^{-25} -115 q^{-26} -125 q^{-27} -102 q^{-28} -6 q^{-29} +210 q^{-30} -2 q^{-31} -30 q^{-32} -87 q^{-33} -60 q^{-34} +98 q^{-35} +23 q^{-36} +19 q^{-37} -36 q^{-38} -47 q^{-39} +28 q^{-40} +8 q^{-41} +17 q^{-42} -5 q^{-43} -17 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> |
coloured_jones_5 = <math>q^{60}-2 q^{59}+q^{57}-q^{56}+2 q^{55}+4 q^{54}-5 q^{53}-3 q^{52}+2 q^{51}-6 q^{50}+4 q^{49}+14 q^{48}-2 q^{47}-5 q^{46}-4 q^{45}-21 q^{44}-5 q^{43}+28 q^{42}+27 q^{41}+15 q^{40}-14 q^{39}-68 q^{38}-56 q^{37}+25 q^{36}+100 q^{35}+116 q^{34}+16 q^{33}-160 q^{32}-222 q^{31}-71 q^{30}+191 q^{29}+370 q^{28}+217 q^{27}-224 q^{26}-555 q^{25}-412 q^{24}+174 q^{23}+752 q^{22}+718 q^{21}-67 q^{20}-947 q^{19}-1053 q^{18}-143 q^{17}+1080 q^{16}+1431 q^{15}+431 q^{14}-1148 q^{13}-1794 q^{12}-752 q^{11}+1127 q^{10}+2086 q^9+1100 q^8-1034 q^7-2310 q^6-1411 q^5+902 q^4+2429 q^3+1667 q^2-734 q-2472-1857 q^{-1} +564 q^{-2} +2453 q^{-3} +1971 q^{-4} -402 q^{-5} -2367 q^{-6} -2035 q^{-7} +241 q^{-8} +2243 q^{-9} +2053 q^{-10} -87 q^{-11} -2067 q^{-12} -2032 q^{-13} -88 q^{-14} +1859 q^{-15} +1973 q^{-16} +264 q^{-17} -1584 q^{-18} -1891 q^{-19} -449 q^{-20} +1293 q^{-21} +1732 q^{-22} +622 q^{-23} -931 q^{-24} -1558 q^{-25} -761 q^{-26} +604 q^{-27} +1278 q^{-28} +837 q^{-29} -232 q^{-30} -1011 q^{-31} -843 q^{-32} -25 q^{-33} +667 q^{-34} +757 q^{-35} +264 q^{-36} -381 q^{-37} -618 q^{-38} -351 q^{-39} +104 q^{-40} +429 q^{-41} +388 q^{-42} +62 q^{-43} -238 q^{-44} -322 q^{-45} -172 q^{-46} +82 q^{-47} +240 q^{-48} +183 q^{-49} +19 q^{-50} -126 q^{-51} -165 q^{-52} -73 q^{-53} +58 q^{-54} +114 q^{-55} +69 q^{-56} -3 q^{-57} -59 q^{-58} -65 q^{-59} -13 q^{-60} +32 q^{-61} +36 q^{-62} +12 q^{-63} -5 q^{-64} -18 q^{-65} -17 q^{-66} +5 q^{-67} +10 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> |
coloured_jones_6 = <math>q^{84}-2 q^{83}+q^{81}-q^{80}+2 q^{79}+6 q^{77}-9 q^{76}-3 q^{75}+4 q^{74}-7 q^{73}+5 q^{72}+5 q^{71}+24 q^{70}-21 q^{69}-12 q^{68}+5 q^{67}-27 q^{66}+q^{65}+20 q^{64}+74 q^{63}-27 q^{62}-25 q^{61}-7 q^{60}-89 q^{59}-31 q^{58}+49 q^{57}+196 q^{56}+17 q^{55}-23 q^{54}-51 q^{53}-269 q^{52}-168 q^{51}+67 q^{50}+454 q^{49}+246 q^{48}+118 q^{47}-103 q^{46}-697 q^{45}-637 q^{44}-120 q^{43}+844 q^{42}+874 q^{41}+752 q^{40}+116 q^{39}-1384 q^{38}-1763 q^{37}-1019 q^{36}+999 q^{35}+1922 q^{34}+2314 q^{33}+1243 q^{32}-1859 q^{31}-3543 q^{30}-3125 q^{29}+165 q^{28}+2796 q^{27}+4727 q^{26}+3756 q^{25}-1278 q^{24}-5230 q^{23}-6201 q^{22}-2076 q^{21}+2590 q^{20}+7062 q^{19}+7201 q^{18}+693 q^{17}-5842 q^{16}-9126 q^{15}-5123 q^{14}+1061 q^{13}+8292 q^{12}+10321 q^{11}+3355 q^{10}-5164 q^9-10853 q^8-7759 q^7-1079 q^6+8234 q^5+12163 q^4+5616 q^3-3831 q^2-11252 q-9251-2914 q^{-1} +7437 q^{-2} +12695 q^{-3} +6961 q^{-4} -2533 q^{-5} -10799 q^{-6} -9712 q^{-7} -4130 q^{-8} +6408 q^{-9} +12358 q^{-10} +7589 q^{-11} -1401 q^{-12} -9859 q^{-13} -9555 q^{-14} -4989 q^{-15} +5152 q^{-16} +11426 q^{-17} +7868 q^{-18} -143 q^{-19} -8380 q^{-20} -8972 q^{-21} -5790 q^{-22} +3411 q^{-23} +9815 q^{-24} +7871 q^{-25} +1419 q^{-26} -6164 q^{-27} -7790 q^{-28} -6448 q^{-29} +1157 q^{-30} +7355 q^{-31} +7270 q^{-32} +2976 q^{-33} -3310 q^{-34} -5756 q^{-35} -6442 q^{-36} -1100 q^{-37} +4217 q^{-38} +5691 q^{-39} +3790 q^{-40} -491 q^{-41} -3019 q^{-42} -5286 q^{-43} -2470 q^{-44} +1183 q^{-45} +3279 q^{-46} +3298 q^{-47} +1297 q^{-48} -405 q^{-49} -3171 q^{-50} -2394 q^{-51} -712 q^{-52} +933 q^{-53} +1773 q^{-54} +1543 q^{-55} +1079 q^{-56} -1078 q^{-57} -1268 q^{-58} -1073 q^{-59} -366 q^{-60} +262 q^{-61} +767 q^{-62} +1182 q^{-63} +60 q^{-64} -157 q^{-65} -525 q^{-66} -498 q^{-67} -415 q^{-68} +6 q^{-69} +601 q^{-70} +228 q^{-71} +268 q^{-72} -15 q^{-73} -152 q^{-74} -365 q^{-75} -224 q^{-76} +143 q^{-77} +49 q^{-78} +196 q^{-79} +107 q^{-80} +58 q^{-81} -139 q^{-82} -140 q^{-83} +7 q^{-84} -38 q^{-85} +56 q^{-86} +52 q^{-87} +64 q^{-88} -28 q^{-89} -43 q^{-90} - q^{-91} -26 q^{-92} +6 q^{-93} +9 q^{-94} +26 q^{-95} -5 q^{-96} -10 q^{-97} +4 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math> |
coloured_jones_7 = <math>q^{112}-2 q^{111}+q^{109}-q^{108}+2 q^{107}+2 q^{105}+2 q^{104}-9 q^{103}-q^{102}+3 q^{101}-6 q^{100}+7 q^{99}+3 q^{98}+11 q^{97}+11 q^{96}-28 q^{95}-7 q^{94}+2 q^{93}-19 q^{92}+12 q^{91}+9 q^{90}+38 q^{89}+41 q^{88}-56 q^{87}-29 q^{86}-16 q^{85}-51 q^{84}+25 q^{83}+27 q^{82}+96 q^{81}+115 q^{80}-91 q^{79}-96 q^{78}-111 q^{77}-139 q^{76}+62 q^{75}+122 q^{74}+276 q^{73}+308 q^{72}-112 q^{71}-286 q^{70}-463 q^{69}-495 q^{68}+34 q^{67}+402 q^{66}+869 q^{65}+980 q^{64}+139 q^{63}-599 q^{62}-1430 q^{61}-1736 q^{60}-661 q^{59}+632 q^{58}+2222 q^{57}+2998 q^{56}+1670 q^{55}-351 q^{54}-3062 q^{53}-4786 q^{52}-3517 q^{51}-588 q^{50}+3816 q^{49}+7082 q^{48}+6256 q^{47}+2521 q^{46}-3931 q^{45}-9630 q^{44}-10112 q^{43}-5829 q^{42}+3173 q^{41}+12096 q^{40}+14679 q^{39}+10528 q^{38}-900 q^{37}-13795 q^{36}-19766 q^{35}-16639 q^{34}-2931 q^{33}+14414 q^{32}+24606 q^{31}+23543 q^{30}+8369 q^{29}-13428 q^{28}-28609 q^{27}-30788 q^{26}-15023 q^{25}+10894 q^{24}+31380 q^{23}+37534 q^{22}+22153 q^{21}-6984 q^{20}-32519 q^{19}-43182 q^{18}-29277 q^{17}+2194 q^{16}+32266 q^{15}+47435 q^{14}+35554 q^{13}+2811 q^{12}-30755 q^{11}-50085 q^{10}-40694 q^9-7636 q^8+28531 q^7+51410 q^6+44492 q^5+11758 q^4-26022 q^3-51586 q^2-46997 q-15071+23460 q^{-1} +51043 q^{-2} +48493 q^{-3} +17596 q^{-4} -21149 q^{-5} -50051 q^{-6} -49152 q^{-7} -19460 q^{-8} +18995 q^{-9} +48723 q^{-10} +49321 q^{-11} +20961 q^{-12} -16936 q^{-13} -47183 q^{-14} -49153 q^{-15} -22238 q^{-16} +14779 q^{-17} +45278 q^{-18} +48678 q^{-19} +23585 q^{-20} -12258 q^{-21} -42961 q^{-22} -47959 q^{-23} -25002 q^{-24} +9292 q^{-25} +39963 q^{-26} +46799 q^{-27} +26559 q^{-28} -5721 q^{-29} -36200 q^{-30} -45063 q^{-31} -28062 q^{-32} +1588 q^{-33} +31519 q^{-34} +42587 q^{-35} +29294 q^{-36} +2862 q^{-37} -25974 q^{-38} -39041 q^{-39} -29920 q^{-40} -7486 q^{-41} +19703 q^{-42} +34560 q^{-43} +29637 q^{-44} +11556 q^{-45} -13068 q^{-46} -28889 q^{-47} -28087 q^{-48} -14950 q^{-49} +6456 q^{-50} +22647 q^{-51} +25292 q^{-52} +16844 q^{-53} -625 q^{-54} -15869 q^{-55} -21155 q^{-56} -17348 q^{-57} -4126 q^{-58} +9515 q^{-59} +16312 q^{-60} +16060 q^{-61} +7132 q^{-62} -3882 q^{-63} -11017 q^{-64} -13576 q^{-65} -8487 q^{-66} -263 q^{-67} +6155 q^{-68} +10143 q^{-69} +8141 q^{-70} +2916 q^{-71} -2143 q^{-72} -6607 q^{-73} -6670 q^{-74} -3880 q^{-75} -595 q^{-76} +3349 q^{-77} +4603 q^{-78} +3714 q^{-79} +2037 q^{-80} -1038 q^{-81} -2529 q^{-82} -2688 q^{-83} -2354 q^{-84} -432 q^{-85} +844 q^{-86} +1549 q^{-87} +1994 q^{-88} +958 q^{-89} +142 q^{-90} -484 q^{-91} -1255 q^{-92} -945 q^{-93} -644 q^{-94} -187 q^{-95} +659 q^{-96} +643 q^{-97} +618 q^{-98} +447 q^{-99} -136 q^{-100} -264 q^{-101} -485 q^{-102} -517 q^{-103} -64 q^{-104} +77 q^{-105} +242 q^{-106} +349 q^{-107} +137 q^{-108} +105 q^{-109} -88 q^{-110} -260 q^{-111} -122 q^{-112} -86 q^{-113} +21 q^{-114} +110 q^{-115} +55 q^{-116} +91 q^{-117} +41 q^{-118} -65 q^{-119} -47 q^{-120} -50 q^{-121} -12 q^{-122} +28 q^{-123} -3 q^{-124} +26 q^{-125} +25 q^{-126} -6 q^{-127} -9 q^{-128} -17 q^{-129} -4 q^{-130} +10 q^{-131} -4 q^{-132} +7 q^{-134} -5 q^{-137} +3 q^{-139} - q^{-140} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 19]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[13, 16, 14, 17], X[7, 15, 8, 14], X[15, 7, 16, 6],
X[11, 18, 12, 1], X[17, 12, 18, 13]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 19]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 19]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, 18, 16, 6, 12]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 19]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, -2, 1, -2, -2, -3, 2, 4, -3, 4}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 19]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 19]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_19_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 19]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 19]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 10 2
17 + -- - -- - 10 t + 2 t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 19]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 - 2 z + 2 z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 19]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 19]], KnotSignature[Knot[9, 19]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{41, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 19]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 4 6 7 2 3 4
7 - q + -- - -- + -- - - - 6 q + 4 q - 2 q + q
4 3 2 q
q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 19]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 19]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 -12 -10 2 -2 2 4 8 10
-1 - q + q + q - q + -- + q + q - 2 q + q - q +
8
q
12 14
q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 19]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-4 -2 2 2 z 2 2 4 2 4 2 4
a - a + a - ---- + a z - a z + z + a z
2
a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 19]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
-4 -2 2 z z 3 2 2 z 3 z 2 2
a + a - a + -- - - - 3 a z - a z + 3 z - ---- - ---- + 8 a z +
3 a 4 2
a a a
3 3 4
4 2 3 z z 3 3 3 5 3 4 z
4 a z - ---- + -- + 10 a z + 4 a z - 2 a z - 4 z + -- -
3 a 4
a a
5 5
2 4 4 4 2 z z 5 3 5 5 5 6
11 a z - 8 a z + ---- - -- - 11 a z - 7 a z + a z + 2 z +
3 a
a
6 7
2 z 2 6 4 6 2 z 7 3 7 8 2 8
---- + 3 a z + 3 a z + ---- + 5 a z + 3 a z + z + a z
2 a
a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 19]], Vassiliev[3][Knot[9, 19]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 19]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 1 2 1 2 2 4 2
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
3 4 3 3 2 5 2 5 3 7 3 9 4
---- + --- + 3 q t + 3 q t + q t + 3 q t + q t + q t + q t
3 q t
q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 19], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 9 10 6 23 14 19 38 13 33 47
45 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- -
14 12 11 10 9 8 7 6 5 4 3
q q q q q q q q q q q
9 40 2 3 4 5 6 7 8
-- - -- - 3 q - 35 q + 31 q + q - 21 q + 15 q + q - 8 q +
2 q
q
9 11 12
5 q - 2 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 16:59, 1 September 2005

9 18.gif

9_18

9 20.gif

9_20

9 19.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 19's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 19 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X13,16,14,17 X7,15,8,14 X15,7,16,6 X11,18,12,1 X17,12,18,13
Gauss code -1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8
Dowker-Thistlethwaite code 4 8 10 14 2 18 16 6 12
Conway Notation [23112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

9 19 ML.gif 9 19 AP.gif
[{11, 5}, {4, 9}, {10, 6}, {5, 7}, {9, 11}, {6, 3}, {2, 4}, {3, 1}, {8, 2}, {7, 10}, {1, 8}]

[edit Notes on presentations of 9 19]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 10.0325
A-Polynomial See Data:9 19/A-polynomial

[edit Notes for 9 19's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 19's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 41, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 19. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        1 -1
5       31 2
3      31  -2
1     43   1
-1    44    0
-3   23     -1
-5  24      2
-7 12       -1
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials