10 144: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_144}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 144 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-6,7,-10,2,3,-9,8,4,-7,6,-5,-3,9,-8/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[K11n99]], | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^5+2 q^4-6 q^3+q^2+12 q-16-5 q^{-1} +31 q^{-2} -24 q^{-3} -17 q^{-4} +49 q^{-5} -26 q^{-6} -29 q^{-7} +54 q^{-8} -21 q^{-9} -32 q^{-10} +44 q^{-11} -10 q^{-12} -25 q^{-13} +25 q^{-14} - q^{-15} -13 q^{-16} +8 q^{-17} + q^{-18} -3 q^{-19} + q^{-20} </math> | |
|||
coloured_jones_3 = <math>2 q^{11}-q^9-9 q^8+5 q^7+13 q^6+4 q^5-30 q^4-11 q^3+38 q^2+37 q-52-59 q^{-1} +51 q^{-2} +96 q^{-3} -50 q^{-4} -126 q^{-5} +37 q^{-6} +156 q^{-7} -20 q^{-8} -184 q^{-9} +5 q^{-10} +198 q^{-11} +16 q^{-12} -208 q^{-13} -33 q^{-14} +208 q^{-15} +48 q^{-16} -196 q^{-17} -62 q^{-18} +176 q^{-19} +69 q^{-20} -144 q^{-21} -75 q^{-22} +111 q^{-23} +71 q^{-24} -75 q^{-25} -62 q^{-26} +46 q^{-27} +47 q^{-28} -23 q^{-29} -33 q^{-30} +9 q^{-31} +21 q^{-32} -4 q^{-33} -10 q^{-34} + q^{-35} +4 q^{-36} + q^{-37} -3 q^{-38} + q^{-39} </math> | |
|||
coloured_jones_4 = <math>q^{20}+2 q^{19}-6 q^{17}-4 q^{16}-5 q^{15}+14 q^{14}+23 q^{13}-7 q^{12}-19 q^{11}-54 q^{10}+9 q^9+81 q^8+44 q^7+6 q^6-159 q^5-86 q^4+108 q^3+158 q^2+156 q-241-273 q^{-1} +8 q^{-2} +245 q^{-3} +432 q^{-4} -202 q^{-5} -454 q^{-6} -218 q^{-7} +217 q^{-8} +732 q^{-9} -47 q^{-10} -547 q^{-11} -475 q^{-12} +91 q^{-13} +962 q^{-14} +137 q^{-15} -552 q^{-16} -676 q^{-17} -61 q^{-18} +1081 q^{-19} +294 q^{-20} -493 q^{-21} -796 q^{-22} -201 q^{-23} +1085 q^{-24} +409 q^{-25} -375 q^{-26} -814 q^{-27} -326 q^{-28} +943 q^{-29} +463 q^{-30} -183 q^{-31} -700 q^{-32} -419 q^{-33} +664 q^{-34} +415 q^{-35} +22 q^{-36} -462 q^{-37} -412 q^{-38} +345 q^{-39} +262 q^{-40} +134 q^{-41} -205 q^{-42} -289 q^{-43} +123 q^{-44} +95 q^{-45} +120 q^{-46} -46 q^{-47} -141 q^{-48} +32 q^{-49} +9 q^{-50} +59 q^{-51} + q^{-52} -49 q^{-53} +12 q^{-54} -8 q^{-55} +17 q^{-56} +4 q^{-57} -13 q^{-58} +4 q^{-59} -3 q^{-60} +4 q^{-61} + q^{-62} -3 q^{-63} + q^{-64} </math> | |
|||
coloured_jones_5 = <math>2 q^{31}+2 q^{29}-3 q^{28}-9 q^{27}-9 q^{26}+7 q^{25}+9 q^{24}+27 q^{23}+24 q^{22}-24 q^{21}-58 q^{20}-48 q^{19}-19 q^{18}+73 q^{17}+152 q^{16}+79 q^{15}-77 q^{14}-200 q^{13}-236 q^{12}-37 q^{11}+293 q^{10}+410 q^9+208 q^8-221 q^7-615 q^6-537 q^5+88 q^4+733 q^3+885 q^2+279 q-753-1283 q^{-1} -712 q^{-2} +571 q^{-3} +1576 q^{-4} +1311 q^{-5} -248 q^{-6} -1784 q^{-7} -1865 q^{-8} -246 q^{-9} +1810 q^{-10} +2432 q^{-11} +817 q^{-12} -1731 q^{-13} -2882 q^{-14} -1407 q^{-15} +1520 q^{-16} +3237 q^{-17} +1980 q^{-18} -1255 q^{-19} -3508 q^{-20} -2471 q^{-21} +984 q^{-22} +3649 q^{-23} +2904 q^{-24} -692 q^{-25} -3764 q^{-26} -3248 q^{-27} +447 q^{-28} +3785 q^{-29} +3520 q^{-30} -176 q^{-31} -3767 q^{-32} -3736 q^{-33} -86 q^{-34} +3667 q^{-35} +3881 q^{-36} +370 q^{-37} -3451 q^{-38} -3956 q^{-39} -695 q^{-40} +3138 q^{-41} +3912 q^{-42} +1020 q^{-43} -2672 q^{-44} -3740 q^{-45} -1333 q^{-46} +2119 q^{-47} +3403 q^{-48} +1554 q^{-49} -1481 q^{-50} -2927 q^{-51} -1665 q^{-52} +883 q^{-53} +2328 q^{-54} +1611 q^{-55} -347 q^{-56} -1709 q^{-57} -1424 q^{-58} -19 q^{-59} +1122 q^{-60} +1127 q^{-61} +239 q^{-62} -643 q^{-63} -815 q^{-64} -302 q^{-65} +312 q^{-66} +518 q^{-67} +267 q^{-68} -101 q^{-69} -294 q^{-70} -206 q^{-71} +15 q^{-72} +148 q^{-73} +123 q^{-74} +15 q^{-75} -56 q^{-76} -67 q^{-77} -25 q^{-78} +26 q^{-79} +33 q^{-80} +8 q^{-81} -9 q^{-82} -5 q^{-83} -10 q^{-84} - q^{-85} +12 q^{-86} -5 q^{-88} + q^{-89} -3 q^{-91} +4 q^{-92} + q^{-93} -3 q^{-94} + q^{-95} </math> | |
|||
coloured_jones_6 = <math>q^{45}+2 q^{44}-4 q^{41}-6 q^{40}-12 q^{39}-5 q^{38}+14 q^{37}+29 q^{36}+29 q^{35}+16 q^{34}-2 q^{33}-76 q^{32}-97 q^{31}-68 q^{30}+38 q^{29}+122 q^{28}+187 q^{27}+221 q^{26}-22 q^{25}-256 q^{24}-436 q^{23}-313 q^{22}-85 q^{21}+349 q^{20}+847 q^{19}+669 q^{18}+153 q^{17}-699 q^{16}-1105 q^{15}-1254 q^{14}-453 q^{13}+1113 q^{12}+1902 q^{11}+1869 q^{10}+422 q^9-1150 q^8-2990 q^7-2924 q^6-559 q^5+2059 q^4+4106 q^3+3520 q^2+1301 q-3296-5871 q^{-1} -4542 q^{-2} -647 q^{-3} +4580 q^{-4} +7057 q^{-5} +6315 q^{-6} -481 q^{-7} -6883 q^{-8} -9007 q^{-9} -5958 q^{-10} +1812 q^{-11} +8666 q^{-12} +11846 q^{-13} +4886 q^{-14} -4787 q^{-15} -11704 q^{-16} -11724 q^{-17} -3341 q^{-18} +7487 q^{-19} +15783 q^{-20} +10647 q^{-21} -634 q^{-22} -12000 q^{-23} -16032 q^{-24} -8770 q^{-25} +4622 q^{-26} +17597 q^{-27} +15100 q^{-28} +3666 q^{-29} -10874 q^{-30} -18460 q^{-31} -13001 q^{-32} +1665 q^{-33} +18028 q^{-34} +17905 q^{-35} +7003 q^{-36} -9489 q^{-37} -19604 q^{-38} -15841 q^{-39} -674 q^{-40} +17839 q^{-41} +19571 q^{-42} +9454 q^{-43} -8121 q^{-44} -19992 q^{-45} -17824 q^{-46} -2763 q^{-47} +16974 q^{-48} +20475 q^{-49} +11658 q^{-50} -6137 q^{-51} -19357 q^{-52} -19234 q^{-53} -5335 q^{-54} +14623 q^{-55} +20160 q^{-56} +13775 q^{-57} -2785 q^{-58} -16737 q^{-59} -19384 q^{-60} -8355 q^{-61} +10120 q^{-62} +17516 q^{-63} +14793 q^{-64} +1572 q^{-65} -11590 q^{-66} -16994 q^{-67} -10422 q^{-68} +4288 q^{-69} +12175 q^{-70} +13224 q^{-71} +5031 q^{-72} -5202 q^{-73} -11867 q^{-74} -9841 q^{-75} -486 q^{-76} +5819 q^{-77} +9032 q^{-78} +5731 q^{-79} -251 q^{-80} -5970 q^{-81} -6725 q^{-82} -2329 q^{-83} +1156 q^{-84} +4300 q^{-85} +3957 q^{-86} +1671 q^{-87} -1827 q^{-88} -3172 q^{-89} -1764 q^{-90} -658 q^{-91} +1204 q^{-92} +1722 q^{-93} +1396 q^{-94} -154 q^{-95} -960 q^{-96} -659 q^{-97} -656 q^{-98} +65 q^{-99} +423 q^{-100} +636 q^{-101} +96 q^{-102} -167 q^{-103} -71 q^{-104} -272 q^{-105} -84 q^{-106} +20 q^{-107} +199 q^{-108} +23 q^{-109} -26 q^{-110} +51 q^{-111} -64 q^{-112} -32 q^{-113} -23 q^{-114} +55 q^{-115} -10 q^{-116} -14 q^{-117} +28 q^{-118} -11 q^{-119} -4 q^{-120} -11 q^{-121} +19 q^{-122} -5 q^{-123} -9 q^{-124} +9 q^{-125} -3 q^{-126} -3 q^{-128} +4 q^{-129} + q^{-130} -3 q^{-131} + q^{-132} </math> | |
|||
coloured_jones_7 = <math>2 q^{61}+2 q^{59}-3 q^{57}-9 q^{56}-7 q^{55}-9 q^{54}-q^{53}+9 q^{52}+29 q^{51}+49 q^{50}+38 q^{49}-6 q^{48}-44 q^{47}-90 q^{46}-128 q^{45}-107 q^{44}-24 q^{43}+162 q^{42}+298 q^{41}+289 q^{40}+217 q^{39}-17 q^{38}-369 q^{37}-656 q^{36}-752 q^{35}-371 q^{34}+292 q^{33}+861 q^{32}+1352 q^{31}+1304 q^{30}+530 q^{29}-689 q^{28}-2088 q^{27}-2574 q^{26}-1898 q^{25}-420 q^{24}+1901 q^{23}+3829 q^{22}+4256 q^{21}+2823 q^{20}-697 q^{19}-4322 q^{18}-6453 q^{17}-6358 q^{16}-2686 q^{15}+2946 q^{14}+8114 q^{13}+10597 q^{12}+7692 q^{11}+823 q^{10}-7412 q^9-14103 q^8-14260 q^7-7497 q^6+3858 q^5+15672 q^4+20608 q^3+16308 q^2+3546 q-13814-25625 q^{-1} -26196 q^{-2} -13969 q^{-3} +7879 q^{-4} +27326 q^{-5} +35465 q^{-6} +26853 q^{-7} +2077 q^{-8} -25236 q^{-9} -42533 q^{-10} -40118 q^{-11} -15237 q^{-12} +18660 q^{-13} +46212 q^{-14} +52700 q^{-15} +30243 q^{-16} -8641 q^{-17} -46145 q^{-18} -62822 q^{-19} -45426 q^{-20} -4128 q^{-21} +42400 q^{-22} +70147 q^{-23} +59682 q^{-24} +17927 q^{-25} -36031 q^{-26} -74330 q^{-27} -71801 q^{-28} -31605 q^{-29} +27847 q^{-30} +75845 q^{-31} +81593 q^{-32} +44203 q^{-33} -19186 q^{-34} -75517 q^{-35} -88915 q^{-36} -54896 q^{-37} +10861 q^{-38} +73802 q^{-39} +94171 q^{-40} +63809 q^{-41} -3410 q^{-42} -71812 q^{-43} -97919 q^{-44} -70663 q^{-45} -2766 q^{-46} +69606 q^{-47} +100458 q^{-48} +76233 q^{-49} +7962 q^{-50} -67759 q^{-51} -102489 q^{-52} -80631 q^{-53} -12238 q^{-54} +65923 q^{-55} +104008 q^{-56} +84545 q^{-57} +16348 q^{-58} -63973 q^{-59} -105234 q^{-60} -88259 q^{-61} -20680 q^{-62} +61376 q^{-63} +105793 q^{-64} +91890 q^{-65} +25794 q^{-66} -57352 q^{-67} -105234 q^{-68} -95431 q^{-69} -31979 q^{-70} +51480 q^{-71} +102845 q^{-72} +98134 q^{-73} +39138 q^{-74} -43106 q^{-75} -97776 q^{-76} -99400 q^{-77} -46793 q^{-78} +32413 q^{-79} +89477 q^{-80} +98054 q^{-81} +53890 q^{-82} -19784 q^{-83} -77718 q^{-84} -93364 q^{-85} -59228 q^{-86} +6475 q^{-87} +63046 q^{-88} +84781 q^{-89} +61556 q^{-90} +6102 q^{-91} -46641 q^{-92} -72739 q^{-93} -60074 q^{-94} -16168 q^{-95} +30171 q^{-96} +58100 q^{-97} +54737 q^{-98} +22765 q^{-99} -15486 q^{-100} -42763 q^{-101} -46248 q^{-102} -25158 q^{-103} +4022 q^{-104} +28217 q^{-105} +35978 q^{-106} +24029 q^{-107} +3551 q^{-108} -16206 q^{-109} -25632 q^{-110} -20196 q^{-111} -7265 q^{-112} +7378 q^{-113} +16421 q^{-114} +15166 q^{-115} +8105 q^{-116} -1826 q^{-117} -9380 q^{-118} -10235 q^{-119} -6983 q^{-120} -916 q^{-121} +4553 q^{-122} +6031 q^{-123} +5155 q^{-124} +1931 q^{-125} -1759 q^{-126} -3167 q^{-127} -3325 q^{-128} -1765 q^{-129} +407 q^{-130} +1320 q^{-131} +1850 q^{-132} +1307 q^{-133} +148 q^{-134} -401 q^{-135} -946 q^{-136} -816 q^{-137} -175 q^{-138} +30 q^{-139} +363 q^{-140} +400 q^{-141} +151 q^{-142} +141 q^{-143} -147 q^{-144} -227 q^{-145} -53 q^{-146} -71 q^{-147} +33 q^{-148} +48 q^{-149} +3 q^{-150} +96 q^{-151} +8 q^{-152} -56 q^{-153} +4 q^{-154} -19 q^{-155} +10 q^{-156} -3 q^{-157} -29 q^{-158} +31 q^{-159} +10 q^{-160} -12 q^{-161} +2 q^{-162} -5 q^{-163} +9 q^{-164} +2 q^{-165} -14 q^{-166} +5 q^{-167} +5 q^{-168} -3 q^{-169} -3 q^{-171} +4 q^{-172} + q^{-173} -3 q^{-174} + q^{-175} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 144]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[18, 11, 19, 12], X[5, 15, 6, 14], |
|||
X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[20, 13, 1, 14], |
|||
X[12, 19, 13, 20], X[9, 2, 10, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 144]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, |
|||
-3, 9, -8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 144]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 16, 2, -18, -20, 8, 6, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 144]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -2, 1, -2, -1, 3, -2, -1, 3, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 144]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 144]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_144_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 144]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 144]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 10 2 |
|||
-13 - -- + -- + 10 t - 3 t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 144]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - 2 z - 3 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 144], Knot[11, NonAlternating, 99]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 144]], KnotSignature[Knot[10, 144]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{39, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 144]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 5 6 7 7 5 |
|||
-3 + q - -- + -- - -- + -- - -- + - + 2 q |
|||
6 5 4 3 2 q |
|||
q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 144]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 144]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -22 -20 -18 2 2 2 -6 3 2 2 4 |
|||
1 + q - q - q + --- + --- - -- - q - -- + -- + q + 2 q |
|||
16 12 8 4 2 |
|||
q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 144]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2 2 2 6 2 2 4 4 4 |
|||
3 - 4 a + 2 a + 2 z - 5 a z + a z - 2 a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 144]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 3 5 2 2 2 4 2 |
|||
3 + 4 a + 2 a - 2 a z - 2 a z - 7 z - 12 a z - 2 a z + |
|||
6 2 8 2 3 3 5 3 7 3 4 2 4 |
|||
2 a z - a z + 8 a z + 4 a z - 4 a z + 3 z + 8 a z - |
|||
4 4 6 4 8 4 5 3 5 5 5 7 5 |
|||
2 a z - 6 a z + a z - a z - 8 a z - 4 a z + 3 a z - |
|||
2 6 4 6 6 6 7 3 7 5 7 2 8 4 8 |
|||
2 a z + 2 a z + 4 a z + a z + 4 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 144]], Vassiliev[3][Knot[10, 144]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 144]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 4 1 2 1 3 2 3 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
|||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
|||
q q t q t q t q t q t q t q t |
|||
4 3 3 4 2 t 3 2 |
|||
----- + ----- + ---- + ---- + --- + q t + 2 q t |
|||
7 2 5 2 5 3 q |
|||
q t q t q t q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 144], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 3 -18 8 13 -15 25 25 10 44 |
|||
-16 + q - --- + q + --- - --- - q + --- - --- - --- + --- - |
|||
19 17 16 14 13 12 11 |
|||
q q q q q q q |
|||
32 21 54 29 26 49 17 24 31 5 2 3 |
|||
--- - -- + -- - -- - -- + -- - -- - -- + -- - - + 12 q + q - 6 q + |
|||
10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q |
|||
4 5 |
|||
2 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 144's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Sergei Chmutov points out that in the 1976 edition of Rolfsen's book, 10_144 was drawn incorrectly. |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X18,11,19,12 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X20,13,1,14 X12,19,13,20 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, -8 |
Dowker-Thistlethwaite code | 4 10 14 16 2 -18 -20 8 6 -12 |
Conway Notation | [31,21,21-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{9, 1}, {12, 7}, {3, 8}, {7, 9}, {6, 10}, {8, 11}, {10, 12}, {2, 4}, {5, 3}, {4, 6}, {1, 5}, {11, 2}] |
[edit Notes on presentations of 10 144]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 144"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X18,11,19,12 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X20,13,1,14 X12,19,13,20 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 16 2 -18 -20 8 6 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31,21,21-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 1}, {12, 7}, {3, 8}, {7, 9}, {6, 10}, {8, 11}, {10, 12}, {2, 4}, {5, 3}, {4, 6}, {1, 5}, {11, 2}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 144"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n99,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 144"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n99,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 144. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|