10 2: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_2}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 2 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,8,-5,9,-6,10,-7,3,-4,2,-8,5,-9,6,-10,7/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-15</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-17</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-19</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-21</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>1- q^{-1} - q^{-2} +3 q^{-3} - q^{-4} -3 q^{-5} +5 q^{-6} -5 q^{-8} +5 q^{-9} + q^{-10} -6 q^{-11} +5 q^{-12} + q^{-13} -6 q^{-14} +4 q^{-15} + q^{-16} -5 q^{-17} +4 q^{-18} -4 q^{-20} +4 q^{-21} -4 q^{-23} +4 q^{-24} + q^{-25} -4 q^{-26} +3 q^{-27} -2 q^{-29} + q^{-30} </math> | |
|||
coloured_jones_3 = <math>q^3-q^2-q+3 q^{-1} -3 q^{-3} -2 q^{-4} +5 q^{-5} +2 q^{-6} -3 q^{-7} -5 q^{-8} +5 q^{-9} +4 q^{-10} -2 q^{-11} -6 q^{-12} +4 q^{-13} +4 q^{-14} - q^{-15} -7 q^{-16} +4 q^{-17} +4 q^{-18} -2 q^{-19} -7 q^{-20} +5 q^{-21} +5 q^{-22} -3 q^{-23} -8 q^{-24} +5 q^{-25} +7 q^{-26} -4 q^{-27} -10 q^{-28} +6 q^{-29} +9 q^{-30} -6 q^{-31} -11 q^{-32} +8 q^{-33} +12 q^{-34} -8 q^{-35} -12 q^{-36} +7 q^{-37} +14 q^{-38} -8 q^{-39} -11 q^{-40} +4 q^{-41} +12 q^{-42} -5 q^{-43} -8 q^{-44} + q^{-45} +9 q^{-46} -3 q^{-47} -5 q^{-48} + q^{-49} +4 q^{-50} - q^{-51} -3 q^{-52} +2 q^{-53} + q^{-54} -2 q^{-56} + q^{-57} </math> | |
|||
coloured_jones_4 = <math>q^8-q^7-q^6+4 q^3-q^2-2 q-2-3 q^{-1} +8 q^{-2} + q^{-3} - q^{-4} -3 q^{-5} -8 q^{-6} +9 q^{-7} +2 q^{-8} +2 q^{-9} - q^{-10} -12 q^{-11} +9 q^{-12} + q^{-13} +3 q^{-14} + q^{-15} -13 q^{-16} +9 q^{-17} +3 q^{-19} +2 q^{-20} -15 q^{-21} +9 q^{-22} + q^{-23} +4 q^{-24} +3 q^{-25} -17 q^{-26} +7 q^{-27} + q^{-28} +5 q^{-29} +7 q^{-30} -18 q^{-31} +3 q^{-32} - q^{-33} +6 q^{-34} +13 q^{-35} -17 q^{-36} -2 q^{-37} -4 q^{-38} +6 q^{-39} +19 q^{-40} -15 q^{-41} -6 q^{-42} -6 q^{-43} +5 q^{-44} +23 q^{-45} -13 q^{-46} -9 q^{-47} -7 q^{-48} +5 q^{-49} +26 q^{-50} -12 q^{-51} -12 q^{-52} -9 q^{-53} +5 q^{-54} +29 q^{-55} -10 q^{-56} -12 q^{-57} -13 q^{-58} +3 q^{-59} +30 q^{-60} -8 q^{-61} -10 q^{-62} -13 q^{-63} + q^{-64} +26 q^{-65} -7 q^{-66} -6 q^{-67} -11 q^{-68} + q^{-69} +20 q^{-70} -7 q^{-71} -3 q^{-72} -7 q^{-73} + q^{-74} +12 q^{-75} -7 q^{-76} + q^{-77} -3 q^{-78} +6 q^{-80} -7 q^{-81} +4 q^{-82} - q^{-83} +2 q^{-85} -5 q^{-86} +3 q^{-87} + q^{-89} -2 q^{-91} + q^{-92} </math> | |
|||
coloured_jones_5 = <math>q^{15}-q^{14}-q^{13}+q^{10}+3 q^9-3 q^7-2 q^6-2 q^5+6 q^3+4 q^2-q-4-5 q^{-1} -4 q^{-2} +5 q^{-3} +7 q^{-4} +3 q^{-5} - q^{-6} -6 q^{-7} -7 q^{-8} +2 q^{-9} +5 q^{-10} +5 q^{-11} +2 q^{-12} -4 q^{-13} -8 q^{-14} +2 q^{-15} +3 q^{-16} +4 q^{-17} +3 q^{-18} -3 q^{-19} -8 q^{-20} + q^{-21} +3 q^{-22} +4 q^{-23} +4 q^{-24} - q^{-25} -9 q^{-26} - q^{-27} +3 q^{-29} +6 q^{-30} +2 q^{-31} -5 q^{-32} - q^{-33} -5 q^{-34} -3 q^{-35} +4 q^{-36} +7 q^{-37} +2 q^{-38} +4 q^{-39} -7 q^{-40} -13 q^{-41} -3 q^{-42} +8 q^{-43} +10 q^{-44} +12 q^{-45} -5 q^{-46} -19 q^{-47} -12 q^{-48} +4 q^{-49} +16 q^{-50} +19 q^{-51} - q^{-52} -21 q^{-53} -18 q^{-54} -2 q^{-55} +18 q^{-56} +23 q^{-57} +4 q^{-58} -20 q^{-59} -20 q^{-60} -6 q^{-61} +15 q^{-62} +24 q^{-63} +8 q^{-64} -17 q^{-65} -19 q^{-66} -9 q^{-67} +12 q^{-68} +21 q^{-69} +10 q^{-70} -13 q^{-71} -19 q^{-72} -11 q^{-73} +9 q^{-74} +21 q^{-75} +15 q^{-76} -9 q^{-77} -22 q^{-78} -17 q^{-79} +6 q^{-80} +22 q^{-81} +20 q^{-82} -2 q^{-83} -23 q^{-84} -22 q^{-85} +2 q^{-86} +19 q^{-87} +20 q^{-88} +3 q^{-89} -20 q^{-90} -18 q^{-91} +2 q^{-92} +14 q^{-93} +14 q^{-94} + q^{-95} -18 q^{-96} -10 q^{-97} +7 q^{-98} +12 q^{-99} +7 q^{-100} -3 q^{-101} -18 q^{-102} -6 q^{-103} +11 q^{-104} +13 q^{-105} +4 q^{-106} -6 q^{-107} -16 q^{-108} -5 q^{-109} +9 q^{-110} +12 q^{-111} +4 q^{-112} -6 q^{-113} -9 q^{-114} -4 q^{-115} +3 q^{-116} +7 q^{-117} +4 q^{-118} -3 q^{-119} -3 q^{-120} -3 q^{-121} +2 q^{-123} +3 q^{-124} - q^{-125} + q^{-126} -2 q^{-127} -2 q^{-128} + q^{-129} + q^{-130} + q^{-132} -2 q^{-134} + q^{-135} </math> | |
|||
coloured_jones_6 = <math>q^{24}-q^{23}-q^{22}+q^{19}+4 q^{17}-q^{16}-3 q^{15}-2 q^{14}-2 q^{13}-q^{11}+10 q^{10}+2 q^9-q^8-3 q^7-5 q^6-4 q^5-8 q^4+13 q^3+5 q^2+4 q+1-3 q^{-1} -6 q^{-2} -16 q^{-3} +11 q^{-4} +2 q^{-5} +6 q^{-6} +4 q^{-7} +3 q^{-8} -3 q^{-9} -20 q^{-10} +11 q^{-11} -2 q^{-12} +4 q^{-13} +3 q^{-14} +6 q^{-15} -21 q^{-17} +13 q^{-18} -4 q^{-19} +3 q^{-20} +2 q^{-21} +8 q^{-22} +2 q^{-23} -22 q^{-24} +14 q^{-25} -7 q^{-26} +9 q^{-29} +7 q^{-30} -19 q^{-31} +19 q^{-32} -9 q^{-33} -6 q^{-34} -7 q^{-35} +3 q^{-36} +8 q^{-37} -12 q^{-38} +32 q^{-39} -3 q^{-40} -7 q^{-41} -16 q^{-42} -12 q^{-43} - q^{-44} -11 q^{-45} +46 q^{-46} +10 q^{-47} +3 q^{-48} -17 q^{-49} -26 q^{-50} -16 q^{-51} -20 q^{-52} +51 q^{-53} +20 q^{-54} +18 q^{-55} -9 q^{-56} -31 q^{-57} -27 q^{-58} -32 q^{-59} +47 q^{-60} +20 q^{-61} +29 q^{-62} + q^{-63} -28 q^{-64} -28 q^{-65} -37 q^{-66} +41 q^{-67} +13 q^{-68} +30 q^{-69} +5 q^{-70} -24 q^{-71} -22 q^{-72} -32 q^{-73} +39 q^{-74} +4 q^{-75} +24 q^{-76} +2 q^{-77} -24 q^{-78} -15 q^{-79} -20 q^{-80} +43 q^{-81} -3 q^{-82} +14 q^{-83} -7 q^{-84} -25 q^{-85} -8 q^{-86} -4 q^{-87} +50 q^{-88} -10 q^{-89} +4 q^{-90} -18 q^{-91} -28 q^{-92} -2 q^{-93} +10 q^{-94} +58 q^{-95} -16 q^{-96} -3 q^{-97} -26 q^{-98} -30 q^{-99} +2 q^{-100} +19 q^{-101} +60 q^{-102} -22 q^{-103} -8 q^{-104} -28 q^{-105} -25 q^{-106} +8 q^{-107} +26 q^{-108} +58 q^{-109} -32 q^{-110} -18 q^{-111} -32 q^{-112} -18 q^{-113} +18 q^{-114} +36 q^{-115} +61 q^{-116} -36 q^{-117} -28 q^{-118} -43 q^{-119} -22 q^{-120} +19 q^{-121} +42 q^{-122} +71 q^{-123} -23 q^{-124} -26 q^{-125} -50 q^{-126} -35 q^{-127} +6 q^{-128} +36 q^{-129} +76 q^{-130} -3 q^{-131} -11 q^{-132} -44 q^{-133} -44 q^{-134} -13 q^{-135} +19 q^{-136} +69 q^{-137} +11 q^{-138} +7 q^{-139} -28 q^{-140} -42 q^{-141} -25 q^{-142} - q^{-143} +54 q^{-144} +15 q^{-145} +20 q^{-146} -10 q^{-147} -33 q^{-148} -27 q^{-149} -15 q^{-150} +37 q^{-151} +12 q^{-152} +22 q^{-153} + q^{-154} -20 q^{-155} -20 q^{-156} -20 q^{-157} +24 q^{-158} +7 q^{-159} +14 q^{-160} +4 q^{-161} -9 q^{-162} -10 q^{-163} -17 q^{-164} +15 q^{-165} +2 q^{-166} +7 q^{-167} +2 q^{-168} -2 q^{-169} -3 q^{-170} -12 q^{-171} +9 q^{-172} - q^{-173} +3 q^{-174} + q^{-175} + q^{-176} - q^{-177} -6 q^{-178} +4 q^{-179} - q^{-180} + q^{-181} + q^{-183} -2 q^{-185} + q^{-186} </math> | |
|||
coloured_jones_7 = <math>q^{35}-q^{34}-q^{33}+q^{30}+q^{28}+3 q^{27}-q^{26}-3 q^{25}-2 q^{24}-3 q^{23}+q^{22}+q^{20}+9 q^{19}+3 q^{18}-q^{17}-3 q^{16}-8 q^{15}-3 q^{14}-4 q^{13}-4 q^{12}+11 q^{11}+8 q^{10}+6 q^9+5 q^8-9 q^7-4 q^6-8 q^5-13 q^4+6 q^3+5 q^2+8 q+13-3 q^{-1} -5 q^{-3} -17 q^{-4} +3 q^{-5} -2 q^{-6} +2 q^{-7} +15 q^{-8} - q^{-9} +4 q^{-10} - q^{-11} -16 q^{-12} +5 q^{-13} -3 q^{-14} -4 q^{-15} +13 q^{-16} - q^{-17} +6 q^{-18} +2 q^{-19} -17 q^{-20} +8 q^{-21} -3 q^{-22} -8 q^{-23} +9 q^{-24} -3 q^{-25} +7 q^{-26} +7 q^{-27} -13 q^{-28} +12 q^{-29} +2 q^{-30} -11 q^{-31} + q^{-32} -13 q^{-33} - q^{-34} +7 q^{-35} -9 q^{-36} +24 q^{-37} +17 q^{-38} -2 q^{-39} -23 q^{-41} -20 q^{-42} -12 q^{-43} -16 q^{-44} +29 q^{-45} +36 q^{-46} +20 q^{-47} +17 q^{-48} -17 q^{-49} -33 q^{-50} -36 q^{-51} -39 q^{-52} +15 q^{-53} +39 q^{-54} +38 q^{-55} +40 q^{-56} +4 q^{-57} -25 q^{-58} -46 q^{-59} -58 q^{-60} -8 q^{-61} +26 q^{-62} +38 q^{-63} +50 q^{-64} +21 q^{-65} -8 q^{-66} -38 q^{-67} -59 q^{-68} -19 q^{-69} +13 q^{-70} +30 q^{-71} +44 q^{-72} +21 q^{-73} -3 q^{-74} -31 q^{-75} -50 q^{-76} -13 q^{-77} +17 q^{-78} +30 q^{-79} +38 q^{-80} +10 q^{-81} -14 q^{-82} -41 q^{-83} -47 q^{-84} -2 q^{-85} +33 q^{-86} +47 q^{-87} +44 q^{-88} +4 q^{-89} -34 q^{-90} -66 q^{-91} -61 q^{-92} + q^{-93} +52 q^{-94} +74 q^{-95} +66 q^{-96} +8 q^{-97} -50 q^{-98} -97 q^{-99} -86 q^{-100} -8 q^{-101} +64 q^{-102} +103 q^{-103} +93 q^{-104} +21 q^{-105} -58 q^{-106} -122 q^{-107} -114 q^{-108} -24 q^{-109} +69 q^{-110} +126 q^{-111} +119 q^{-112} +35 q^{-113} -59 q^{-114} -141 q^{-115} -138 q^{-116} -40 q^{-117} +68 q^{-118} +143 q^{-119} +142 q^{-120} +50 q^{-121} -58 q^{-122} -152 q^{-123} -157 q^{-124} -56 q^{-125} +61 q^{-126} +153 q^{-127} +160 q^{-128} +63 q^{-129} -55 q^{-130} -155 q^{-131} -168 q^{-132} -67 q^{-133} +56 q^{-134} +158 q^{-135} +171 q^{-136} +67 q^{-137} -59 q^{-138} -160 q^{-139} -177 q^{-140} -67 q^{-141} +64 q^{-142} +171 q^{-143} +183 q^{-144} +66 q^{-145} -71 q^{-146} -177 q^{-147} -194 q^{-148} -70 q^{-149} +72 q^{-150} +189 q^{-151} +205 q^{-152} +77 q^{-153} -74 q^{-154} -189 q^{-155} -212 q^{-156} -88 q^{-157} +61 q^{-158} +190 q^{-159} +221 q^{-160} +94 q^{-161} -56 q^{-162} -176 q^{-163} -210 q^{-164} -106 q^{-165} +34 q^{-166} +166 q^{-167} +211 q^{-168} +104 q^{-169} -33 q^{-170} -145 q^{-171} -187 q^{-172} -107 q^{-173} +12 q^{-174} +134 q^{-175} +184 q^{-176} +96 q^{-177} -18 q^{-178} -115 q^{-179} -154 q^{-180} -95 q^{-181} +4 q^{-182} +105 q^{-183} +148 q^{-184} +81 q^{-185} -10 q^{-186} -87 q^{-187} -121 q^{-188} -76 q^{-189} +77 q^{-191} +110 q^{-192} +63 q^{-193} -4 q^{-194} -60 q^{-195} -85 q^{-196} -56 q^{-197} -4 q^{-198} +48 q^{-199} +74 q^{-200} +42 q^{-201} -34 q^{-203} -52 q^{-204} -34 q^{-205} -5 q^{-206} +26 q^{-207} +41 q^{-208} +24 q^{-209} +2 q^{-210} -17 q^{-211} -31 q^{-212} -14 q^{-213} - q^{-214} +10 q^{-215} +20 q^{-216} +11 q^{-217} +4 q^{-218} -9 q^{-219} -19 q^{-220} -3 q^{-221} +2 q^{-222} +3 q^{-223} +7 q^{-224} +5 q^{-225} +4 q^{-226} -4 q^{-227} -11 q^{-228} +3 q^{-230} - q^{-231} +3 q^{-232} + q^{-233} +3 q^{-234} - q^{-235} -5 q^{-236} +2 q^{-238} - q^{-239} + q^{-240} + q^{-242} -2 q^{-244} + q^{-245} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], |
|||
X[7, 16, 8, 17], X[9, 18, 10, 19], X[11, 20, 12, 1], X[15, 6, 16, 7], |
|||
X[17, 8, 18, 9], X[19, 10, 20, 11]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, |
|||
6, -10, 7]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 14, 16, 18, 20, 2, 6, 8, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -1, -1, -1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 2]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_2_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 2]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 4, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 2]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 3 3 2 3 4 |
|||
-3 - t + -- - -- + - + 3 t - 3 t + 3 t - t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 2]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 + 2 z - 5 z - 5 z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 2]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 2]], KnotSignature[Knot[10, 2]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{23, -6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 2]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -11 2 2 3 3 3 3 2 2 -2 1 |
|||
q - --- + -- - -- + -- - -- + -- - -- + -- - q + - |
|||
10 9 8 7 6 5 4 3 q |
|||
q q q q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 2]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 2]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -32 -26 -24 -22 -20 -18 -14 -10 -8 -6 -4 |
|||
q - q - q - q - q + q + q + q + q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 2]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 4 2 6 2 8 2 4 4 6 4 |
|||
4 a - 4 a + a + 10 a z - 14 a z + 6 a z + 6 a z - 16 a z + |
|||
8 4 4 6 6 6 8 6 6 8 |
|||
5 a z + a z - 7 a z + a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 2]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 5 7 9 11 13 4 2 |
|||
4 a + 4 a + a - 2 a z - a z + a z - a z - a z - 14 a z - |
|||
6 2 8 2 12 2 14 2 5 3 7 3 9 3 |
|||
21 a z - 5 a z - a z + a z - 3 a z + 3 a z + 2 a z - |
|||
11 3 13 3 4 4 6 4 8 4 10 4 |
|||
2 a z + 2 a z + 16 a z + 33 a z + 11 a z - 4 a z + |
|||
12 4 5 5 7 5 9 5 11 5 4 6 |
|||
2 a z + 10 a z + 2 a z - 6 a z + 2 a z - 7 a z - |
|||
6 6 8 6 10 6 5 7 7 7 9 7 4 8 |
|||
18 a z - 9 a z + 2 a z - 6 a z - 4 a z + 2 a z + a z + |
|||
6 8 8 8 5 9 7 9 |
|||
3 a z + 2 a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 2]], Vassiliev[3][Knot[10, 2]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 2]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 2 1 1 1 1 1 2 |
|||
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
5 23 8 21 7 19 7 19 6 17 6 17 5 |
|||
q q t q t q t q t q t q t |
|||
1 1 2 2 1 1 2 1 |
|||
------ + ------ + ------ + ------ + ------ + ------ + ----- + ---- + |
|||
15 5 15 4 13 4 13 3 11 3 11 2 9 2 9 |
|||
q t q t q t q t q t q t q t q t |
|||
2 |
|||
1 t t |
|||
---- + -- + -- |
|||
7 5 q |
|||
q t q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 2], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -30 2 3 4 -25 4 4 4 4 4 5 |
|||
1 + q - --- + --- - --- + q + --- - --- + --- - --- + --- - --- + |
|||
29 27 26 24 23 21 20 18 17 |
|||
q q q q q q q q q |
|||
-16 4 6 -13 5 6 -10 5 5 5 3 |
|||
q + --- - --- + q + --- - --- + q + -- - -- + -- - -- - |
|||
15 14 12 11 9 8 6 5 |
|||
q q q q q q q q |
|||
-4 3 -2 1 |
|||
q + -- - q - - |
|||
3 q |
|||
q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X7,16,8,17 X9,18,10,19 X11,20,12,1 X15,6,16,7 X17,8,18,9 X19,10,20,11 |
Gauss code | -1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, 6, -10, 7 |
Dowker-Thistlethwaite code | 4 12 14 16 18 20 2 6 8 10 |
Conway Notation | [712] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{12, 2}, {1, 10}, {11, 3}, {2, 4}, {10, 12}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 11}, {9, 1}] |
[edit Notes on presentations of 10 2]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 2"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X7,16,8,17 X9,18,10,19 X11,20,12,1 X15,6,16,7 X17,8,18,9 X19,10,20,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, 6, -10, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 14 16 18 20 2 6 8 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[712] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {11, 3}, {2, 4}, {10, 12}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 11}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 2"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|