9 36: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=9_36}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 9 |
k = 36 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,3,-4,2,-5,9,-8,6,-7,5,-9,8/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
braid_crossings = 9 |
braid_width = 4 |
braid_index = 4 |
same_alexander = |
same_jones = [[K11n16]], |
khovanov_table = <table border=1>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table> |
coloured_jones_2 = <math>q^{25}-2 q^{24}+q^{23}+3 q^{22}-8 q^{21}+6 q^{20}+7 q^{19}-20 q^{18}+13 q^{17}+14 q^{16}-32 q^{15}+15 q^{14}+21 q^{13}-35 q^{12}+10 q^{11}+25 q^{10}-30 q^9+2 q^8+24 q^7-19 q^6-4 q^5+17 q^4-8 q^3-5 q^2+7 q-1-2 q^{-1} + q^{-2} </math> |
coloured_jones_3 = <math>-q^{48}+2 q^{47}-q^{46}-q^{44}+3 q^{43}-3 q^{42}-q^{41}+5 q^{40}+2 q^{39}-14 q^{38}+q^{37}+23 q^{36}+2 q^{35}-40 q^{34}-5 q^{33}+57 q^{32}+10 q^{31}-67 q^{30}-24 q^{29}+79 q^{28}+32 q^{27}-77 q^{26}-46 q^{25}+75 q^{24}+51 q^{23}-62 q^{22}-61 q^{21}+51 q^{20}+63 q^{19}-34 q^{18}-68 q^{17}+22 q^{16}+64 q^{15}-3 q^{14}-63 q^{13}-8 q^{12}+53 q^{11}+22 q^{10}-44 q^9-26 q^8+27 q^7+32 q^6-17 q^5-25 q^4+4 q^3+20 q^2+q-11-4 q^{-1} +6 q^{-2} +2 q^{-3} - q^{-4} -2 q^{-5} + q^{-6} </math> |
coloured_jones_4 = <math>q^{78}-2 q^{77}+q^{76}-2 q^{74}+6 q^{73}-6 q^{72}+3 q^{71}-2 q^{70}-7 q^{69}+19 q^{68}-10 q^{67}+4 q^{66}-14 q^{65}-21 q^{64}+52 q^{63}+5 q^{62}+3 q^{61}-61 q^{60}-66 q^{59}+111 q^{58}+68 q^{57}+29 q^{56}-144 q^{55}-177 q^{54}+155 q^{53}+175 q^{52}+117 q^{51}-210 q^{50}-326 q^{49}+139 q^{48}+251 q^{47}+235 q^{46}-200 q^{45}-431 q^{44}+76 q^{43}+245 q^{42}+314 q^{41}-135 q^{40}-445 q^{39}+20 q^{38}+175 q^{37}+329 q^{36}-56 q^{35}-393 q^{34}-18 q^{33}+84 q^{32}+306 q^{31}+21 q^{30}-308 q^{29}-51 q^{28}-16 q^{27}+263 q^{26}+97 q^{25}-201 q^{24}-73 q^{23}-113 q^{22}+186 q^{21}+146 q^{20}-75 q^{19}-51 q^{18}-177 q^{17}+75 q^{16}+134 q^{15}+27 q^{14}+14 q^{13}-164 q^{12}-21 q^{11}+61 q^{10}+56 q^9+71 q^8-89 q^7-48 q^6-7 q^5+24 q^4+69 q^3-20 q^2-22 q-23-6 q^{-1} +32 q^{-2} +2 q^{-3} -9 q^{-5} -8 q^{-6} +7 q^{-7} + q^{-8} +2 q^{-9} - q^{-10} -2 q^{-11} + q^{-12} </math> |
coloured_jones_5 = <math>-q^{115}+2 q^{114}-q^{113}+2 q^{111}-3 q^{110}-3 q^{109}+6 q^{108}-2 q^{106}+4 q^{105}-8 q^{104}-7 q^{103}+15 q^{102}+9 q^{101}-4 q^{100}-9 q^{99}-26 q^{98}-10 q^{97}+41 q^{96}+56 q^{95}+8 q^{94}-63 q^{93}-114 q^{92}-46 q^{91}+120 q^{90}+211 q^{89}+105 q^{88}-164 q^{87}-365 q^{86}-227 q^{85}+212 q^{84}+551 q^{83}+407 q^{82}-198 q^{81}-767 q^{80}-664 q^{79}+141 q^{78}+957 q^{77}+954 q^{76}-5 q^{75}-1088 q^{74}-1248 q^{73}-203 q^{72}+1160 q^{71}+1499 q^{70}+411 q^{69}-1123 q^{68}-1663 q^{67}-648 q^{66}+1043 q^{65}+1761 q^{64}+796 q^{63}-906 q^{62}-1745 q^{61}-934 q^{60}+770 q^{59}+1701 q^{58}+976 q^{57}-635 q^{56}-1584 q^{55}-1012 q^{54}+508 q^{53}+1479 q^{52}+997 q^{51}-383 q^{50}-1336 q^{49}-1005 q^{48}+256 q^{47}+1206 q^{46}+984 q^{45}-108 q^{44}-1037 q^{43}-988 q^{42}-49 q^{41}+869 q^{40}+941 q^{39}+217 q^{38}-642 q^{37}-900 q^{36}-367 q^{35}+421 q^{34}+777 q^{33}+489 q^{32}-167 q^{31}-634 q^{30}-548 q^{29}-45 q^{28}+420 q^{27}+541 q^{26}+231 q^{25}-218 q^{24}-447 q^{23}-327 q^{22}-q^{21}+312 q^{20}+359 q^{19}+134 q^{18}-141 q^{17}-288 q^{16}-236 q^{15}-q^{14}+199 q^{13}+225 q^{12}+103 q^{11}-69 q^{10}-188 q^9-145 q^8-10 q^7+102 q^6+134 q^5+67 q^4-38 q^3-91 q^2-74 q-13+49 q^{-1} +61 q^{-2} +23 q^{-3} -11 q^{-4} -33 q^{-5} -30 q^{-6} -2 q^{-7} +19 q^{-8} +13 q^{-9} +6 q^{-10} -11 q^{-12} -6 q^{-13} +3 q^{-14} +2 q^{-15} + q^{-16} +2 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} </math> |
coloured_jones_6 = <math>q^{159}-2 q^{158}+q^{157}-2 q^{155}+3 q^{154}+3 q^{152}-9 q^{151}+4 q^{150}+5 q^{149}-9 q^{148}+7 q^{147}+q^{146}+2 q^{145}-22 q^{144}+14 q^{143}+23 q^{142}-17 q^{141}+7 q^{140}-8 q^{139}-20 q^{138}-50 q^{137}+49 q^{136}+91 q^{135}+4 q^{134}+7 q^{133}-74 q^{132}-140 q^{131}-147 q^{130}+126 q^{129}+324 q^{128}+197 q^{127}+80 q^{126}-272 q^{125}-576 q^{124}-535 q^{123}+171 q^{122}+880 q^{121}+896 q^{120}+532 q^{119}-526 q^{118}-1563 q^{117}-1660 q^{116}-215 q^{115}+1649 q^{114}+2360 q^{113}+1889 q^{112}-320 q^{111}-2866 q^{110}-3714 q^{109}-1619 q^{108}+1932 q^{107}+4143 q^{106}+4224 q^{105}+980 q^{104}-3574 q^{103}-5994 q^{102}-3962 q^{101}+1053 q^{100}+5152 q^{99}+6605 q^{98}+3142 q^{97}-3008 q^{96}-7301 q^{95}-6185 q^{94}-650 q^{93}+4821 q^{92}+7869 q^{91}+5049 q^{90}-1629 q^{89}-7217 q^{88}-7257 q^{87}-2117 q^{86}+3715 q^{85}+7801 q^{84}+5887 q^{83}-398 q^{82}-6372 q^{81}-7173 q^{80}-2778 q^{79}+2663 q^{78}+7061 q^{77}+5837 q^{76}+329 q^{75}-5445 q^{74}-6593 q^{73}-2950 q^{72}+1847 q^{71}+6211 q^{70}+5538 q^{69}+906 q^{68}-4520 q^{67}-5963 q^{66}-3170 q^{65}+929 q^{64}+5266 q^{63}+5298 q^{62}+1723 q^{61}-3306 q^{60}-5211 q^{59}-3559 q^{58}-342 q^{57}+3938 q^{56}+4911 q^{55}+2725 q^{54}-1636 q^{53}-3997 q^{52}-3749 q^{51}-1783 q^{50}+2085 q^{49}+3939 q^{48}+3405 q^{47}+222 q^{46}-2163 q^{45}-3196 q^{44}-2783 q^{43}+36 q^{42}+2210 q^{41}+3149 q^{40}+1556 q^{39}-113 q^{38}-1741 q^{37}-2679 q^{36}-1399 q^{35}+225 q^{34}+1847 q^{33}+1679 q^{32}+1255 q^{31}-4 q^{30}-1467 q^{29}-1540 q^{28}-1026 q^{27}+263 q^{26}+705 q^{25}+1311 q^{24}+974 q^{23}-55 q^{22}-651 q^{21}-1006 q^{20}-551 q^{19}-358 q^{18}+482 q^{17}+801 q^{16}+553 q^{15}+208 q^{14}-284 q^{13}-370 q^{12}-649 q^{11}-190 q^{10}+160 q^9+328 q^8+364 q^7+185 q^6+75 q^5-326 q^4-247 q^3-156 q^2-12 q+110+165 q^{-1} +202 q^{-2} -36 q^{-3} -56 q^{-4} -104 q^{-5} -80 q^{-6} -44 q^{-7} +24 q^{-8} +103 q^{-9} +22 q^{-10} +24 q^{-11} -13 q^{-12} -24 q^{-13} -39 q^{-14} -16 q^{-15} +24 q^{-16} +3 q^{-17} +14 q^{-18} +5 q^{-19} +3 q^{-20} -11 q^{-21} -8 q^{-22} +5 q^{-23} -2 q^{-24} +2 q^{-25} + q^{-26} +2 q^{-27} - q^{-28} -2 q^{-29} + q^{-30} </math> |
coloured_jones_7 = <math>-q^{210}+2 q^{209}-q^{208}+2 q^{206}-3 q^{205}+5 q^{201}-7 q^{200}+10 q^{198}-7 q^{197}-2 q^{195}+10 q^{193}-23 q^{192}-2 q^{191}+30 q^{190}+2 q^{189}+8 q^{188}-13 q^{187}-16 q^{186}-2 q^{185}-59 q^{184}-4 q^{183}+80 q^{182}+66 q^{181}+72 q^{180}-25 q^{179}-111 q^{178}-128 q^{177}-195 q^{176}-22 q^{175}+234 q^{174}+355 q^{173}+396 q^{172}+55 q^{171}-391 q^{170}-691 q^{169}-824 q^{168}-287 q^{167}+598 q^{166}+1339 q^{165}+1627 q^{164}+762 q^{163}-796 q^{162}-2263 q^{161}-2972 q^{160}-1774 q^{159}+793 q^{158}+3493 q^{157}+5011 q^{156}+3568 q^{155}-291 q^{154}-4852 q^{153}-7804 q^{152}-6380 q^{151}-985 q^{150}+5979 q^{149}+11075 q^{148}+10283 q^{147}+3487 q^{146}-6418 q^{145}-14563 q^{144}-15080 q^{143}-7200 q^{142}+5766 q^{141}+17506 q^{140}+20258 q^{139}+12093 q^{138}-3700 q^{137}-19423 q^{136}-25223 q^{135}-17618 q^{134}+357 q^{133}+19939 q^{132}+29168 q^{131}+23038 q^{130}+3952 q^{129}-18853 q^{128}-31698 q^{127}-27838 q^{126}-8519 q^{125}+16685 q^{124}+32629 q^{123}+31204 q^{122}+12699 q^{121}-13680 q^{120}-32121 q^{119}-33229 q^{118}-16054 q^{117}+10735 q^{116}+30705 q^{115}+33766 q^{114}+18191 q^{113}-8068 q^{112}-28724 q^{111}-33353 q^{110}-19364 q^{109}+6072 q^{108}+26814 q^{107}+32294 q^{106}+19632 q^{105}-4667 q^{104}-24989 q^{103}-31027 q^{102}-19553 q^{101}+3673 q^{100}+23484 q^{99}+29786 q^{98}+19309 q^{97}-2816 q^{96}-22038 q^{95}-28674 q^{94}-19251 q^{93}+1810 q^{92}+20571 q^{91}+27645 q^{90}+19425 q^{89}-448 q^{88}-18811 q^{87}-26599 q^{86}-19868 q^{85}-1347 q^{84}+16644 q^{83}+25314 q^{82}+20431 q^{81}+3602 q^{80}-13898 q^{79}-23673 q^{78}-20966 q^{77}-6153 q^{76}+10627 q^{75}+21432 q^{74}+21134 q^{73}+8861 q^{72}-6795 q^{71}-18529 q^{70}-20805 q^{69}-11345 q^{68}+2718 q^{67}+14866 q^{66}+19571 q^{65}+13324 q^{64}+1475 q^{63}-10618 q^{62}-17429 q^{61}-14381 q^{60}-5224 q^{59}+5978 q^{58}+14230 q^{57}+14294 q^{56}+8187 q^{55}-1397 q^{54}-10277 q^{53}-12873 q^{52}-9924 q^{51}-2639 q^{50}+5923 q^{49}+10292 q^{48}+10201 q^{47}+5568 q^{46}-1731 q^{45}-6854 q^{44}-9031 q^{43}-7126 q^{42}-1705 q^{41}+3248 q^{40}+6739 q^{39}+7095 q^{38}+3871 q^{37}+47 q^{36}-3839 q^{35}-5856 q^{34}-4688 q^{33}-2293 q^{32}+1104 q^{31}+3757 q^{30}+4129 q^{29}+3389 q^{28}+1072 q^{27}-1580 q^{26}-2836 q^{25}-3283 q^{24}-2149 q^{23}-197 q^{22}+1173 q^{21}+2391 q^{20}+2332 q^{19}+1230 q^{18}+150 q^{17}-1205 q^{16}-1771 q^{15}-1450 q^{14}-957 q^{13}+153 q^{12}+942 q^{11}+1134 q^{10}+1164 q^9+478 q^8-209 q^7-592 q^6-925 q^5-656 q^4-253 q^3+75 q^2+539 q+567+390 q^{-1} +192 q^{-2} -194 q^{-3} -300 q^{-4} -314 q^{-5} -301 q^{-6} -38 q^{-7} +117 q^{-8} +195 q^{-9} +232 q^{-10} +85 q^{-11} +17 q^{-12} -43 q^{-13} -148 q^{-14} -102 q^{-15} -57 q^{-16} +4 q^{-17} +74 q^{-18} +41 q^{-19} +40 q^{-20} +37 q^{-21} -15 q^{-22} -27 q^{-23} -34 q^{-24} -22 q^{-25} +13 q^{-26} + q^{-27} +5 q^{-28} +16 q^{-29} +5 q^{-30} +2 q^{-31} -8 q^{-32} -8 q^{-33} +3 q^{-34} -2 q^{-36} +2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} -2 q^{-41} + q^{-42} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 36]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[11, 17, 12, 16], X[5, 15, 6, 14], X[15, 7, 16, 6],
X[13, 1, 14, 18], X[17, 13, 18, 12]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 36]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -5, 9, -8, 6, -7, 5, -9, 8]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 36]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 10, 2, 16, 18, 6, 12]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 36]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, 3, -2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 36]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 36]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_36_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 36]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, {4, 7}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 36]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 5 8 2 3
9 - t + -- - - - 8 t + 5 t - t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 36]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 3 z - z - z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 36]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 36]], KnotSignature[Knot[9, 36]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{37, 4}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 36]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8 9
1 - 2 q + 4 q - 5 q + 6 q - 6 q + 6 q - 4 q + 2 q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 36], Knot[11, NonAlternating, 16]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 36]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 10 12 14 16 18 20 22 26
1 + q + q - q + q - 2 q + q + q + q + 2 q - q - q -
28
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 36]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 4 4 4 6
-2 4 3 2 z 6 z 5 z 3 z 2 z 4 z z z
-- + -- - -- + -- - -- + ---- - ---- + ---- + ---- - ---- + -- - --
8 6 4 2 8 6 4 2 6 4 2 4
a a a a a a a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 36]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2
-2 4 3 2 z z z 2 z z z 7 z 15 z
-- - -- - -- - -- - --- + -- + -- - --- - -- - --- + ---- + ----- +
8 6 4 2 11 9 7 5 3 10 8 6
a a a a a a a a a a a a
2 2 3 3 3 3 4 4 4
12 z 5 z z 2 z 9 z 6 z 2 z 7 z 17 z
----- + ---- + --- - ---- + ---- + ---- + ---- - ---- - ----- -
4 2 11 9 5 3 10 8 6
a a a a a a a a a
4 4 5 5 5 5 6 6 6 6
12 z 4 z 3 z 4 z 14 z 7 z 4 z 4 z z z
----- - ---- + ---- - ---- - ----- - ---- + ---- + ---- + -- + -- +
4 2 9 7 5 3 8 6 4 2
a a a a a a a a a a
7 7 7 8 8
3 z 5 z 2 z z z
---- + ---- + ---- + -- + --
7 5 3 6 4
a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 36]], Vassiliev[3][Knot[9, 36]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 7}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 36]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3
3 5 1 q q 5 7 7 2 9 2
3 q + 2 q + ---- + - + -- + 3 q t + 2 q t + 3 q t + 3 q t +
2 t t
q t
9 3 11 3 11 4 13 4 13 5 15 5
3 q t + 3 q t + 3 q t + 3 q t + q t + 3 q t +
15 6 17 6 19 7
q t + q t + q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 36], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6 7
-1 + q - - + 7 q - 5 q - 8 q + 17 q - 4 q - 19 q + 24 q +
q
8 9 10 11 12 13 14 15
2 q - 30 q + 25 q + 10 q - 35 q + 21 q + 15 q - 32 q +
16 17 18 19 20 21 22 23
14 q + 13 q - 20 q + 7 q + 6 q - 8 q + 3 q + q -
24 25
2 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:03, 1 September 2005

9 35.gif

9_35

9 37.gif

9_37

9 36.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 36's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 36 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X7,10,8,11 X3948 X9,3,10,2 X11,17,12,16 X5,15,6,14 X15,7,16,6 X13,1,14,18 X17,13,18,12
Gauss code -1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -5, 9, -8, 6, -7, 5, -9, 8
Dowker-Thistlethwaite code 4 8 14 10 2 16 18 6 12
Conway Notation [22,3,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 36 ML.gif 9 36 AP.gif
[{11, 5}, {6, 4}, {5, 10}, {3, 6}, {8, 11}, {7, 9}, {4, 8}, {2, 7}, {1, 3}, {10, 2}, {9, 1}]

[edit Notes on presentations of 9 36]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-12]
Hyperbolic Volume 9.88458
A-Polynomial See Data:9 36/A-polynomial

[edit Notes for 9 36's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 4

[edit Notes for 9 36's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 37, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11n16,}

Vassiliev invariants

V2 and V3: (3, 7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 36. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
19         1-1
17        1 1
15       31 -2
13      31  2
11     33   0
9    33    0
7   23     1
5  23      -1
3 13       2
1 1        -1
-11         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials